Increased EEG spectral power density during sleep following short-term sleep deprivation in pigeons (Columba livia): evidence for avian sleep homeostasis

2008 ◽  
Vol 17 (2) ◽  
pp. 140-153 ◽  
Author(s):  
DOLORES MARTINEZ-GONZALEZ ◽  
JOHN A. LESKU ◽  
NIELS C. RATTENBORG
Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4215
Author(s):  
Radosław Wróbel ◽  
Lech Sitnik ◽  
Monika Andrych-Zalewska ◽  
Łukasz Łoza ◽  
Radostin Dimitrov ◽  
...  

The article presents the results of research on the vibroacoustic response of internal combustion engines mounted in a vehicle. The vehicles studied belong to popular models, which became available in successive versions. Each group included vehicles of the same model of an older generation (equipped with a naturally aspirated engine) and of a newer generation, including downsized (and turbocharged) engines. Tests in each group were carried out under repeatable conditions on a chassis-load dynamometer. The vibrations were measured using single-axis accelerometers mounted on the steering wheel, engine, and driver’s head restraint mounting. The primary purpose of the study was to verify whether the new generations of vehicles equipped with additional high-speed elements (compressors) generate additional harmonics (especially those within the range potentially affecting travel comfort and human health) and whether there are significant changes in the distribution of spectral power density in the new generations. As the study showed, new generations of vehicles are characterized by a different vibroacoustic response, and the trend of change is the same in each of the families studied.


2020 ◽  
Vol 22 (4) ◽  
pp. 651-657
Author(s):  
Javier Castilla-Gutiérrez ◽  
Juan Carlos Fortes ◽  
Jose Miguel Davila

1979 ◽  
Vol 23 (89) ◽  
pp. 57-66 ◽  
Author(s):  
J.-P. Benoist

Abstract Longitudinal profiles of roches moutonnées have been measured once every centimetre over a total length of more than 100 m. Only wavelengths in the range 3.6 cm < λ < 40 cm have been kept and analysed. Levels and their slopes have a symmetrical, non-Gaussian distribution. The spectral power density varies roughly as γ 0 ν–n (ν ═ wavenumber ═ 1/λ); n being the same for all the profiles (n ═ 2.36) and γ 0 being dependent on the studied area. No significant difference has been found for the shadowing function of the different studied areas. It differs consistently from Smith’s theoretical function.


SLEEP ◽  
2019 ◽  
Vol 43 (6) ◽  
Author(s):  
Sjoerd J van Hasselt ◽  
Maria Rusche ◽  
Alexei L Vyssotski ◽  
Simon Verhulst ◽  
Niels C Rattenborg ◽  
...  

Abstract Most of our knowledge about the regulation and function of sleep is based on studies in a restricted number of mammalian species, particularly nocturnal rodents. Hence, there is still much to learn from comparative studies in other species. Birds are interesting because they appear to share key aspects of sleep with mammals, including the presence of two different forms of sleep, i.e. non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. We examined sleep architecture and sleep homeostasis in the European starling, using miniature dataloggers for electroencephalogram (EEG) recordings. Under controlled laboratory conditions with a 12:12 h light–dark cycle, the birds displayed a pronounced daily rhythm in sleep and wakefulness with most sleep occurring during the dark phase. Sleep mainly consisted of NREM sleep. In fact, the amount of REM sleep added up to only 1~2% of total sleep time. Animals were subjected to 4 or 8 h sleep deprivation to assess sleep homeostatic responses. Sleep deprivation induced changes in subsequent NREM sleep EEG spectral qualities for several hours, with increased spectral power from 1.17 Hz up to at least 25 Hz. In contrast, power below 1.17 Hz was decreased after sleep deprivation. Sleep deprivation also resulted in a small compensatory increase in NREM sleep time the next day. Changes in EEG spectral power and sleep time were largely similar after 4 and 8 h sleep deprivation. REM sleep was not noticeably compensated after sleep deprivation. In conclusion, starlings display signs of NREM sleep homeostasis but the results do not support the notion of important REM sleep functions.


2019 ◽  
Vol 20 (14) ◽  
pp. 3486 ◽  
Author(s):  
Julian I. Hofmann ◽  
Cornelius Schwarz ◽  
Uwe Rudolph ◽  
Bernd Antkowiak

Patterns of spontaneous electric activity in the cerebral cortex change upon administration of benzodiazepines. Here we are testing the hypothesis that the prototypical benzodiazepine, diazepam, affects spectral power density in the low (20–50 Hz) and high (50–90 Hz) γ-band by targeting GABAA receptors harboring α1- and α2-subunits. Local field potentials (LFPs) and action potentials were recorded in the barrel cortex of wild type mice and two mutant strains in which the drug exclusively acted via GABAA receptors containing either α1- (DZα1-mice) or α2-subunits (DZα2-mice). In wild type mice, diazepam enhanced low γ-power. This effect was also evident in DZα2-mice, while diazepam decreased low γ-power in DZα1-mice. Diazepam increased correlated local LFP-activity in wild type animals and DZα2- but not in DZα1-mice. In all genotypes, spectral power density in the high γ-range and multi-unit action potential activity declined upon diazepam administration. We conclude that diazepam modifies low γ-power in opposing ways via α1- and α2-GABAA receptors. The drug’s boosting effect involves α2-receptors and an increase in local intra-cortical synchrony. Furthermore, it is important to make a distinction between high- and low γ-power when evaluating the effects of drugs that target GABAA receptors.


Sign in / Sign up

Export Citation Format

Share Document