Identification of an NAP-like transcription factor BeNAC1 regulating leaf senescence in bamboo (Bambusa emeiensis‘Viridiflavus’)

2011 ◽  
Vol 142 (4) ◽  
pp. 361-371 ◽  
Author(s):  
Yunxia Chen ◽  
Kai Qiu ◽  
Benke Kuai ◽  
Yulong Ding
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kuo Yang ◽  
Jian-Ping An ◽  
Chong-Yang Li ◽  
Xue-Na Shen ◽  
Ya-Jing Liu ◽  
...  

AbstractJasmonic acid (JA) plays an important role in regulating leaf senescence. However, the molecular mechanisms of leaf senescence in apple (Malus domestica) remain elusive. In this study, we found that MdZAT10, a C2H2-type zinc finger transcription factor (TF) in apple, markedly accelerates leaf senescence and increases the expression of senescence-related genes. To explore how MdZAT10 promotes leaf senescence, we carried out liquid chromatography/mass spectrometry screening. We found that MdABI5 physically interacts with MdZAT10. MdABI5, an important positive regulator of leaf senescence, significantly accelerated leaf senescence in apple. MdZAT10 was found to enhance the transcriptional activity of MdABI5 for MdNYC1 and MdNYE1, thus accelerating leaf senescence. In addition, we found that MdZAT10 expression was induced by methyl jasmonate (MeJA), which accelerated JA-induced leaf senescence. We also found that the JA-responsive protein MdBT2 directly interacts with MdZAT10 and reduces its protein stability through ubiquitination and degradation, thereby delaying MdZAT10-mediated leaf senescence. Taken together, our results provide new insight into the mechanisms by which MdZAT10 positively regulates JA-induced leaf senescence in apple.


Planta ◽  
2017 ◽  
Vol 247 (1) ◽  
pp. 53-68 ◽  
Author(s):  
Tingting Ren ◽  
Jiawei Wang ◽  
Mingming Zhao ◽  
Xiaoming Gong ◽  
Shuxia Wang ◽  
...  

2016 ◽  
Vol 57 (5) ◽  
pp. 1098-1114 ◽  
Author(s):  
Maiana Reis Pimenta ◽  
Priscila Alves Silva ◽  
Giselle Camargo Mendes ◽  
Janaína Roberta Alves ◽  
Hanna Durso Neves Caetano ◽  
...  

2011 ◽  
Vol 31 (4) ◽  
pp. 303-313 ◽  
Author(s):  
Xiang Zhou ◽  
Yanjuan Jiang ◽  
Diqiu Yu

2021 ◽  
Author(s):  
Yanan Chen ◽  
Panpan Feng ◽  
Boyan Tang ◽  
Zongli Hu ◽  
Qiaoli Xie ◽  
...  

Abstract The process of plant senescence is complex and highly coordinated, and is regulated by many endogenous and environmental signals. Ethylene and jasmonic acid are well-known senescence inducers, but their molecular mechanisms for inducing leaf senescence have not been fully elucidated. Here, we studied a receptor gene downstream of an ethylene signal transduction pathway, ETHYLENE RESPONSE FACTOR F5 (SlERF.F5). The silence of SlERF.F5 causes accelerated senescence induced by age, darkness, ethylene, and jasmonic acid. However, overexpression of SlERF.F5 may delay leaf senescence. We further found that silencing of SlERF.F5 inhibited the expression of chlorophyll-related genes CHLH, CHLM, POR, CAO1, GUN4, PPH, SGR1, RBCS, and AUREA genes, and the light-responsive RBCS and LHCA1 gene. Moreover, silencing of SlERF.F5 increases the sensitivity of SlERF.F5-RNAi lines to ethylene and jasmonic acid compared to wild type. In the dark-induced aging experiment, the qRT-PCR analysis showed the expression levels of genes related to the ethylene biosynthesis pathway and the jasmonic acid signaling pathway in SlERF.F5-RNAi lines increased compared with wild type. Yeast two-hybrid experiments showed that SlERF.F5 and SlMYC2 (a transcription factor downstream of the JA receptor) can interact physically, thereby mediating the role of SlERF.F5 in jasmonic acid-induced leaf senescence. Collectively, our research provides new insights into how ethylene and jasmonic acid promote leaf senescence in tomatoes.


2021 ◽  
Author(s):  
Yingqi Hong ◽  
Jianyi Zhang ◽  
Yanxi Lv ◽  
Na Yao ◽  
Xiuming Liu

Abstract BackgroundSalicylic acid (SA) plays an important role in regulating leaf senescence. However, the molecular mechanism of leaf senescence of safflower (Carthamus tinctorius) is still elusive. In this study we found that the bHLH transcription factor (TF) CtbHLH41 in Carthamus tinctorius significantly delayed leaf senescence and inhibited the expression of senescence-related genes.ResultsIn order to explore how CtbHLH41 promotes leaf senescence, we carried out yeast two-hybrid screening. In this study, by exploring the mechanism of CtbHLH41 regulating CtCP1, it was found that CtCP1 promoted the hydrolysis of CtbHLH41 protein, accelerated the transcriptional activities of salicylic acid-mediated senescence-related genes CtSAG12 and CtSAG29, chlorophyll degradation genes CtNYC1 and CtNYE1, and accelerated leaf senescence. We found a negative SA regulator CtANS1, which interacts with CtbHLH41 and regulates its stability, thereby inhibiting CtCP1-mediated leaf senescence.ConclusionsIn short, our results provide a new insight into the mechanism of CtbHLH41 actively regulating the senescence of safflower leaves induced by SA.


2020 ◽  
Vol 71 (22) ◽  
pp. 6945-6957
Author(s):  
Youhong Fan ◽  
Xiangli Niu ◽  
Li Huang ◽  
Rachel Gross ◽  
Han Lu ◽  
...  

Abstract BSD (mammalian BTF2-like transcription factors, synapse-associated proteins, and DOS2-like proteins) is a conserved domain that exists in a variety of organisms, but its function has not been well studied. Here, we identified a novel BSD domain-containing protein (SlBSD1) in tomato (Solanum lycopersicum). Biochemical and microscopy assays indicated that SlBSD1 is a functional transcription factor that is predominantly localized in the nucleus. Loss-of-function and overexpression analyses suggested that SlBSD1 is a novel regulator of vegetative growth and leaf senescence in tomato. SlBSD1-knockdown (-KD) plants exhibited retarded vegetative growth and precocious leaf senescence, whereas SlBSD1-overexpression (-OX) plants displayed the opposite phenotypes. The negative role of SlBSD1 in leaf senescence was also supported by RNA-seq analysis comparing leaf tissues from SlBSD1-KD and wild-type plants. In addition, contents of soluble solids were altered in fruits in the SlBSD1-KD and SlBSD1-OX plants. Taken together, our data suggest that the novel transcription factor SlBSD1 plays important roles in controlling fruit quality and other physiological processes in tomato, including vegetative growth and leaf senescence.


Sign in / Sign up

Export Citation Format

Share Document