Variation in the total lengths of abutment/implant assemblies generated with a function of applied tightening torque in external and internal implant-abutment connection

2010 ◽  
Vol 22 (8) ◽  
pp. 834-839 ◽  
Author(s):  
Ki-Seong Kim ◽  
Young-Jun Lim ◽  
Myung-Joo Kim ◽  
Ho-Beom Kwon ◽  
Jae-Ho Yang ◽  
...  
2015 ◽  
Vol 41 (2) ◽  
pp. 139-143 ◽  
Author(s):  
Eduardo Aydos Villarinho ◽  
André Cervieri ◽  
Rosemary Sadami Arai Shinkai ◽  
Márcio Lima Grossi ◽  
Eduardo Rolim Teixeira

The biomechanical stability of the implant-abutment connection is critical for the success of implant-supported restorations. This study investigated the effect of a positioning index on the abutment screw preload values of tapered connection implants. Twenty Morse taper implants presenting an internal locking hex received 10 solid and 10 straight screw retained abutments for cemented single-crown restorations. Ten abutments had a positioning index to fit the internal locking hex of the implant (straight), and 10 were locked only by the implant taper (solid). The preload values for each abutment screw after a tightening torque were registered by strain gauges. Prosthetic crowns were placed on each abutment and subjected to mechanical cycling. Detorque forces were applied to each abutment and compared with the initial torque values. Data were statistically analyzed using Kolmogorov-Smirnov and Student t tests. The nonindexed group presented higher initial preload (6.05 N ± 0.95 N) compared with the indexed group (4.88 N ± 0.92 N; P < .05). After cycling, the nonindexed group exhibited less reduction of preload (13.84% ± 6.43%) compared with the indexed group (52.65% ± 14.81%; P < .01). Indexed tapered abutments for single-crown restorations might represent greater biomechanical risk under function.


2020 ◽  
Vol 9 (8) ◽  
pp. 2365
Author(s):  
Jorge Vélez ◽  
Jesús Peláez ◽  
Carlos López-Suárez ◽  
Rubén Agustín-Panadero ◽  
Celia Tobar ◽  
...  

Background: An accurate fit at the implant-abutment interface is an important factor to avoid biological and mechanical complications. The aim of this study was to evaluate the marginal misfit at the implant-abutment interface on external and Morse taper connection, with straight and angulated abutments under different insertion torque loads. Materials and Methods: A total of 120 implants were used, 60 with external connection (EC) and 60 with Morse taper connection (IC). Straight (SA) (n = 60) and angulated abutments (AA) (n = 60) were randomly screwed to each connection at different torque levels (n = 10 each): 10, 20 and 30 Ncm. All specimens were subjected to thermal and cyclic loading and the misfit was measured by scanning electron microscopy. Data were analyzed with one-way ANOVA, t-test and Kruskal-Wallis test. Results: Significant differences (p < 0.001) were found between connections and abutments regardless of the torque applied. Morse taper connections with straight and angulated abutments showed the lowest misfit values (0.6 µm). Misfit values decreased as torque increased. Conclusions: The misfit was affected by the type of connection. The type of abutment did not influence the fit in the Morse taper connection. The higher the tightening torque applied the increase in the fit of the implant-abutment interface.


2014 ◽  
Vol 24 (6) ◽  
pp. 2143-2149 ◽  
Author(s):  
Dandan Xia ◽  
Hong Lin ◽  
Shenpo Yuan ◽  
Wei Bai ◽  
Gang Zheng

2014 ◽  
Vol 40 (6) ◽  
pp. 633-639 ◽  
Author(s):  
Erica Dorigatti de Avila ◽  
Fernanda de Matos Moraes ◽  
Sabrina Maria Castanharo ◽  
Marcelo Antonialli Del'Acqua ◽  
Francisco de Assis Mollo

Because there is no consensus in the literature about the need for a splint between copings, the aim of this study was to evaluate, in vitro, the accuracy of 2 impression techniques for implant-supported prostheses. A master cast was fabricated with four parallel implant abutment analogs and a passive framework. Two groups with 5 casts each were formed: Group 1 (squared impression copings with no splint: S) and Group 2 (splinted squared impression copings, using metal drill burs and Pattern resin: SS). The impression material used was polyvinyl siloxane with open trays for standard preparation of the casts. For each cast, the framework was positioned, and a titanium screw was tightened with 10 N·cm torque in analog A, after which measurements of the abutment-framework interface gaps were performed at analogs C and D. This process was repeated for analog D. These measurements were analyzed using software. A one-way analysis of variance (ANOVA) with a confidence interval of 95% was used to analyze the data. Significant differences were detected between S and SS in relation to the master cast (P ≤ 0.05). The median values of the abutment-framework interface gaps were as follows: master cast: 39.64 μm; squared impression copings with no splint: 205.86 μm; splinted squared impression copings: 99.19 μm. Under the limitations of this study, the technique presented for Group 2 produces better results compared with the technique used for Group 1.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1126
Author(s):  
Giovanna Iezzi ◽  
Francesca Di Lillo ◽  
Michele Furlani ◽  
Marco Degidi ◽  
Adriano Piattelli ◽  
...  

Symmetric and well-organized connective tissues around the longitudinal implant axis were hypothesized to decrease early bone resorption by reducing inflammatory cell infiltration. Previous studies that referred to the connective tissue around implant and abutments were based on two-dimensional investigations; however, only advanced three-dimensional characterizations could evidence the organization of connective tissue microarchitecture in the attempt of finding new strategies to reduce inflammatory cell infiltration. We retrieved three implants with a cone morse implant–abutment connection from patients; they were investigated by high-resolution X-ray phase-contrast microtomography, cross-linking the obtained information with histologic results. We observed transverse and longitudinal orientated collagen bundles intertwining with each other. In the longitudinal planes, it was observed that the closer the fiber bundles were to the implant, the more symmetric and regular their course was. The transverse bundles of collagen fibers were observed as semicircular, intersecting in the lamina propria of the mucosa and ending in the oral epithelium. No collagen fibers were found radial to the implant surface. This intertwining three-dimensional pattern seems to favor the stabilization of the soft tissues around the implants, preventing inflammatory cell apical migration and, consequently, preventing bone resorption and implant failure. This fact, according to the authors’ best knowledge, has never been reported in the literature and might be due to the physical forces acting on fibroblasts and on the collagen produced by the fibroblasts themselves, in areas close to the implant and to the symmetric geometry of the implant itself.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 385
Author(s):  
Igor Smojver ◽  
Marko Vuletić ◽  
Dražena Gerbl ◽  
Ana Budimir ◽  
Mato Sušić ◽  
...  

The microenvironment of the oral cavity is altered when an implant, a biocompatible foreign body, is inserted into the mouth. Bacteria settle in the tissues in and around the implant due to the passage of microorganisms through the microgap at the connection of the implant and prosthetic abutment. To prevent colonization of the implant by microorganisms, one idea is to use sealing and antimicrobial materials to decontaminate the implant–abutment interface and close the microgap. The purpose of this study is to evaluate the antimicrobial efficacy and permeability of different types of sealing materials at the implant–abutment interface, under static conditions. Three different sealing material (GapSeal gel, Oxysafe gel and Flow.sil) were used for sealing the implant–abutment interfaces in 60 titanium dental implants, which were first contaminated with a solution containing Staphylococcus aureus and Candida albicans for 14 days under an aerobic condition. Results showed that a complete seal against bacterial infection was not formed at the implant–abutment interface, while for fungal infections, only GapSeal material helped to prevent microleakage. Findings of this in vitro study reported that application of sealing material before abutment connection may reduce peri-implant bacterial and fungal population compared with the interface without sealing material.


Sign in / Sign up

Export Citation Format

Share Document