DEFECT DETECTION IN CONCRETE STRUCTURES USING THERMAL IMAGING TECHNIQUES

2010 ◽  
Vol 35 (4) ◽  
pp. 39-43 ◽  
Author(s):  
S. Bhalla ◽  
S. Tuli ◽  
R. Arora
Sensors ◽  
2017 ◽  
Vol 17 (8) ◽  
pp. 1718 ◽  
Author(s):  
Quang Huy Tran ◽  
Dongyeob Han ◽  
Choonghyun Kang ◽  
Achintya Haldar ◽  
Jungwon Huh

Author(s):  
Yongmei Liu ◽  
Rajen Dias

Abstract Study presented here has shown that Infrared thermography has the potential to be a nondestructive analysis tool for evaluating package sublayer defects. Thermal imaging is achieved by applying pulsed external heating to the package surface and monitoring the surface thermal response as a function of time with a high-speed IR camera. Since the thermal response of the surface is affected by the defects such as voids and delamination below the package surface, the technique can be used to assist package defects detection and analysis.


Author(s):  
Sathish K. Gurupatham ◽  
Erhan Ilksoy ◽  
Nick Jacob ◽  
Kevin Van Der Horn ◽  
Fahad Fahad

Novel technologies have always been an indispensable part of the scientific enterprise and a catalyst for new discoveries. The invisible radiation patterns of objects are converted into visible images called thermograms or thermal images. Thermal images can be utilized to estimate the ripeness of some fruits which do not change their color from yellow to green when they are ripe. Thermal imaging techniques are very helpful since color and fluorescent analytical approaches cannot be applied to these fruits. In this work, it is shown that different ripeness levels of avocado (Hall type) using a non-destructive method called thermal imaging, in two dimensional spaces. The work is based on the fact that fruits have different specific heat capacities at different temperatures, thus making their thermal images clear indicators of ripeness.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Kit Fook Liu ◽  
Hwa Kian Chai ◽  
Nima Mehrabi ◽  
Kobayashi Yoshikazu ◽  
Tomoki Shiotani

Imaging techniques are high in demand for modern nondestructive evaluation of large-scale concrete structures. The travel-time tomography (TTT) technique, which is based on the principle of mapping the change of propagation velocity of transient elastic waves in a measured object, has found increasing application for assessing in situ concrete structures. The primary aim of this technique is to detect defects that exist in a structure. The TTT technique can offer an effective means for assessing tendon duct filling of prestressed concrete (PC) elements. This study is aimed at clarifying some of the issues pertaining to the reliability of the technique for this purpose, such as sensor arrangement, model, meshing, type of tendon sheath, thickness of sheath, and material type as well as the scale of inhomogeneity. The work involved 2D simulations of wave motions, signal processing to extract travel time of waves, and tomography reconstruction computation for velocity mapping of defect in tendon duct.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4077 ◽  
Author(s):  
Jeongguk Kim

Infrared (IR) thermography technology is one of the leading non-destructive evaluation (NDE) techniques based on infrared detection. Infrared thermography, in particular, has the advantage of not only being used in non-contact mode but also provides full images, real-time inspection, and relatively fast results. These advantages make it possible to perform thermal imaging analysis of railway materials and/or components, such as brake disc simulation, monitoring of abnormal heat generation, and monitoring of temperature changes, during mechanical tests. This study introduces the current state of research on railway materials and/or components using IR thermography technology. An attempt was made to characterize the deterioration of electrical equipment of diesel electric locomotives using infrared thermal imaging techniques. In addition, surface temperature monitoring was performed during tensile testing of railway steels using a high-speed infrared camera. Damage evolution due to the hot spot generation of railway brake discs was successfully monitored using high-speed IR cameras. In this paper, IR thermal imaging technology, used as a non-destructive evaluation analysis in the railway field, was introduced, and the results of recent research are presented.


Sign in / Sign up

Export Citation Format

Share Document