Effects ofLactobacillus plantarumCCFM0236 on hyperglycaemia and insulin resistance in high-fat and streptozotocin-induced type 2 diabetic mice

2016 ◽  
Vol 121 (6) ◽  
pp. 1727-1736 ◽  
Author(s):  
X. Li ◽  
N. Wang ◽  
B. Yin ◽  
D. Fang ◽  
T. Jiang ◽  
...  
2020 ◽  
Vol 1727 ◽  
pp. 146511 ◽  
Author(s):  
Xin Fang ◽  
Tianjiao Xia ◽  
Fangxia Xu ◽  
Hao Wu ◽  
Zhengliang Ma ◽  
...  

Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 159 ◽  
Author(s):  
Kyung-Ah Park ◽  
Zhen Jin ◽  
Jong Youl Lee ◽  
Hyeong Seok An ◽  
Eun Bee Choi ◽  
...  

Glucagon-like peptide 1 (GLP-1) mimetics have been approved as an adjunct therapy for glycemic control in type 2 diabetic patients for the increased insulin secretion under hyperglycemic conditions. Recently, it is reported that such agents elicit neuroprotective effects against diabetes-associated cognitive decline. However, there is an issue of poor compliance by multiple daily subcutaneous injections for sufficient glycemic control due to their short duration, and neuroprotective actions were not fully studied, yet. In this study, using the prepared exendin-4 fusion protein agent, we investigated the pharmacokinetic profile and the role of this GLP-1 mimetics on memory deficits in a high-fat diet (HFD)/streptozotocin (STZ) mouse model of type 2 diabetic mellitus. After induction of diabetes, mice were administered weekly by intraperitoneal injection of GLP-1 mimetics for 6 weeks. This treatment reversed HFD/STZ-induced metabolic symptoms of increased body weight, hyperglycemia, and hepatic steatosis. Furthermore, the impaired cognitive performance of diabetic mice was significantly reversed by GLP-1 mimetics. GLP-1 mimetic treatment also reversed decreases in GLP-1/GLP-1 receptor expression levels in both the pancreas and hippocampus of diabetic mice; increases in hippocampal inflammation, mitochondrial fission, and calcium-binding protein levels were also reversed. These findings suggest that GLP-1 mimetics are promising agents for both diabetes and neurodegenerative diseases that are associated with increased GLP-1 expression in the brain.


Nutrients ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 670 ◽  
Author(s):  
Lihua Han ◽  
Tiange Li ◽  
Min Du ◽  
Rui Chang ◽  
Biyuan Zhan ◽  
...  

Potentilla discolor Bunge (PDB), a perennial herb, has been used as a traditional Chinese medicine in the therapy of many diseases. The aim of the current study was to investigate the effect of PDB water extract on systemic inflammation and gut microbiota in type 2 diabetic (T2D) mice induced by high-fat diet (HFD) and streptozotocin (STZ) injection. C57BL/6J mice were randomly divided into a normal diet (ND) group, T2D group, and PDB group (diabetic mice treated with PDB water extract at a dose of 400 mg/kg body weight). Results showed that PDB significantly decreased the levels of lipopolysaccharide (LPS) and pro-inflammatory cytokines in serum. Further investigation showed that PDB significantly reduced the ratio of Firmicutes/Bacteroidetes and the relative abundance of Proteobacteria in fecal samples of diabetic mice. In addition, PDB notably alleviated intestinal inflammation as evidenced by decreased expression of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), nuclear factor-κB (NF-κB), and inflammatory cytokines. PDB also reversed the decreased expression of intestinal mucosal tight junction proteins including Claudin3, ZO-1, and Occludin. Meanwhile, the levels of fecal acetic acid and butyric acid and their specific receptors including G-protein-coupled receptor (GPR) 41 and 43 expression in the colon were also increased after PDB treatment. Our results indicated that PDB might serve as a potential functional ingredient against diabetes and related inflammation.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Amirhosein Khoshi ◽  
Golnaz Goodarzi ◽  
Rezvan Mohammadi ◽  
Roghaye Arezumand ◽  
Meysam Moghbeli ◽  
...  

Abstract Background Alpha-synuclein (SNCA) as the presynaptic protein is expressed in different tissues and prevents insulin-resistance (IR) through increasing glucose-uptake by adipocytes and muscles. However, the effect of insulin metabolism on SNCA expression has scarcely elucidated. In present study we assessed the probable effect of insulin resistance on SNCA expression in muscle C2C12 cells and also skeletal muscle tissues of type 2 diabetic mice. Materials and methods Sixteen male C57BL/6 mice were divided into two experimental groups, including control and type 2 diabetic mice with IR (induced by high-fat diet + low-dose streptozotocin). The animals of the study involved the measurements of fasting blood glucose, oral-glucose-tolerance-test, as well as fasting plasma insulin. Moreover, insulin-resistant and insulin-sensitive muscle C2C12 cells were prepared. The insulin-resistance was confirmed by the glucose-uptake assay. Comparative quantitative real time PCR was used to assess the SNCA expression. Results The obtained results have showed a significant ~ 27% decrease in SNCA expression level in muscle tissue of diabetic mice (P = 0.022). Moreover, there was a significant change of SNCA expression in insulin-resistant C2C12 cells (P < 0.001). Conclusion Type 2 diabetes due to insulin-resistance can decrease SNCA gene expression in muscles. In addition to the role of SNCA in cell susceptibility to insulin and glucose uptake, the SNCA expression can also be affected by insulin metabolism.


2017 ◽  
Vol 4 (S) ◽  
pp. 166
Author(s):  
Anh Nguyen Tu Bui ◽  
Cong Le Thanh Nguyen ◽  
Anh Thi Minh Nguyen ◽  
Nhat Chau Truong ◽  
Ngoc Kim Phan ◽  
...  

Background: Type 2 diabetes (T2D) is the most common form of diabetes and accounts for 90-95% of all existing diabetic cases. The main etiologies of T2D include insulin resistance in target tissues, insufficient secretion of insulin and subsequent decline of pancreatic β-cell function. Recently, many studies have suggested that adipose – derived stem cells (ASCs) were potential to alleviate insulin resistance and hyperglycemia and promote the islets repair. In this study, ASCs were hypothesized that they could have ameliorative effects on type 2 diabetic mice.  Methods: Type 2 diabetic mice were induced by a combination of high-fat diet and injection of STZ 100 mg/kg and NA 120 mg/kg. Thereafter, two doses of 106 human ASCs were transplanted 2 week interval into each mouse via the tail vein. The mice were monitored health condition, rate of mortaity, body weight, consumption of food and water, blood glucose level, serum insulin level and histological structure of pancreatic islets.  Results: Our results indicated that the ASC-treated mice expressed improved condition in comparision with non-treated diabetic mice. The consumption of food and water as well as the blood glucose level decreased. Simultaneously, ASC transplantation improved the impaired glucose tolerance and insulin tolerance in T2D mice. Besides, the total cholesterol have significantly decreased.  Conclusion: it is suggested that human ASCs infusion is safe and effective for type 2 diabetes mellitus in mice regarding the improved glucose metabolism and insulin resistance.


Sign in / Sign up

Export Citation Format

Share Document