scholarly journals Microbial contamination in drinking water at public outdoor recreation facilities in New Zealand

2020 ◽  
Vol 130 (1) ◽  
pp. 302-312 ◽  
Author(s):  
B.J. Phiri ◽  
N.P. French ◽  
P.J. Biggs ◽  
M.A. Stevenson ◽  
A.D. Reynolds ◽  
...  
2007 ◽  
Vol 136 (10) ◽  
pp. 1383-1387 ◽  
Author(s):  
I. R. LAKE ◽  
J. PEARCE ◽  
M. SAVILL

SUMMARYIn New Zealand human cryptosporidiosis demonstrates spring and autumn peaks of incidence with the spring peak being three times greater in magnitude than the autumn peak. The imbalance between the two peaks is notable, and may be associated with the high livestock density in New Zealand. In the summer and autumn the cryptosporidiosis rate was positively associated with temperatures in the current and previous month, highlighting the importance of outdoor recreation to transmission. No associations between spring incidence and weather were found providing little support for the importance of drinking-water pathways. Imported travel cases do not appear to be an important factor in the aetiology of cryptosporidiosis in New Zealand.


2012 ◽  
Vol 8 ◽  
pp. 34-37
Author(s):  
Arshad Ali ◽  
Hashim Nissar Hasim ◽  
Ashfaq Ahmad ◽  
Intikhab Ahmad Qureashi

Pakistan is subjected to rapid water shortage due to different social and environmental problems. Moreover, the drinking water is being contaminated at an alarming rate that is mostly due to the discharge of untreated domestic and industrial effluent and agricultural run-off. Therefore, this study was designed to evaluate the water quality problems of the subject area and to determine a cost effective treatment technique. The main objective was to determine the removal efficiency of microbial contamination using flocculant settling. The main pollutants identified by conducting water quality tests are arsenic, fluoride, nitrates and microbial contamination. The maximum concentration of arsenic, fluoride, nitrates and microbial contamination were observed as 12ppb, 2.2mg/L, 26mg/L and 84 colonies/100mL, respectively. During discrete settling tests performed in a 12cft column, it was noticed that the removal of microbial contamination corresponding to a detention time of 225min is 26.7% only. While working on different coagulants, it was observed that the optimum alum, lime and magnesium dosage for the removal of microbial contamination is 31.5mg/L, 10.5mg/L and 27mg/L respectively. The final results of the study suggest that the use of lime as a coagulant to improve the quality of water in terms of microbial contamination is an effective and reliable technique, both in terms of its treatability performance and cost-effectiveness, which was noticed to be 77.7%.DOI: http://dx.doi.org/10.3126/hn.v8i0.4909Hydro Nepal: Journal of Water, Energy and Environment Issue No. 8, 2011 JanuaryPage: 34-37Uploaded date: 17 June, 2011


2014 ◽  
Vol 202 (3-4) ◽  
pp. 287-291 ◽  
Author(s):  
Rima D. Shrestha ◽  
Alex Grinberg ◽  
Venkata S.R. Dukkipati ◽  
Eve J. Pleydell ◽  
Deborah J. Prattley ◽  
...  

2007 ◽  
Vol 5 (S1) ◽  
pp. 67-79 ◽  
Author(s):  
J. Åström ◽  
T. J. R. Pettersson ◽  
T. A. Stenström

Microbial contamination of surface waters constitutes a health risk for drinking water consumers which may be lowered by closing the raw water intake. We have evaluated microbial discharge events reported in the river Göta älv, which is used for raw water supply to the city of Göteborg. Elevated levels of faecal indicator bacteria were observed during periods of closed raw water intake. High bacteria levels were, however, also occasionally detected during periods of open intake, probably as a result of microbial discharge far upstream in the river which may be difficult to predict and manage by closing the intake. Accumulated upstream precipitations, resulting in surface runoff and wastewater contaminations in the catchment, correlated positively with the levels of total coliforms, E. coli, intestinal enterococci and sulfite-reducing clostridia. Levels of faecal indicator organisms were negatively correlated to the water temperature due to enhanced survival at lower temperatures. Wastewater discharges from a municipality located just upstream of the water intake resulted in elevated E. coli concentrations downstream at the raw water intake for Göteborg. To improve the prediction of microbial contaminations within the river Göta älv, monitoring data on turbidity and upstream precipitation are of particular importance.


2012 ◽  
Vol 12 (9) ◽  
pp. 856-862 ◽  
Author(s):  
Abdelmonem M. Abdella ◽  
Hago M. Abdel-Magi ◽  
Nadia A. Yahia

Author(s):  
Paul J Molino ◽  
Richard Bentham ◽  
Michael J Higgins ◽  
Jason Hinds ◽  
Harriet Whiley

Recently in Australia concerns have been raised regarding the contamination of municipal drinking water supplies with lead. This is of particular concern to children due to the impact of lead exposure on cognitive development and as such these findings have received much media attention. The response from legislators has been swift, and The Victorian School Building Authority has announced that all new schools and school upgrade works will only use lead-free tapware and piping systems. However, while the immediate replacement of lead-containing brass fittings may seem a logical and obvious response, it does not consider the potential implications on microbial contamination. This is particularly concerning given the increasing public health threat posed by opportunistic premise plumbing pathogens (OPPPs). This commentary explores this public health risk of lead exposure from plumbing materials compared to the potential public health risks from OPPPs. Non-tuberculous mycobacterium was chosen as the example OPPP, and the influence on plumbing material and its public health burden in Australia is explored. This commentary highlights the need for future research into the influence of plumbing material on OPPPs prior to any changes in legislation regarding plumbing material.


2018 ◽  
Vol 4 (2) ◽  
pp. 291-302 ◽  
Author(s):  
Brandon Reyneke ◽  
Thomas Eugene Cloete ◽  
Sehaam Khan ◽  
Wesaal Khan

Solar pasteurization systems are able to reduce microbial contamination in rainwater to within drinking water guidelines and thereby provide households in informal settlements and rural areas with an alternative water source.


Sign in / Sign up

Export Citation Format

Share Document