scholarly journals Acid‐sensing ion channel 1a is involved in ischaemia/reperfusion induced kidney injury by increasing renal epithelia cell apoptosis

2019 ◽  
Vol 23 (5) ◽  
pp. 3429-3440 ◽  
Author(s):  
Nana Song ◽  
Zhihui Lu ◽  
Jian Zhang ◽  
Yiqin Shi ◽  
Yichun Ning ◽  
...  
2021 ◽  
Vol 16 (1) ◽  
pp. 537-543
Author(s):  
Mei Zhang ◽  
Jing Yuan ◽  
Rong Dong ◽  
Jingjing Da ◽  
Qian Li ◽  
...  

Abstract Background Hyperhomocysteinemia (HHcy) plays an important role in the progression of many kidney diseases; however, the relationship between HHcy and ischemia-reperfusion injury (IRI)-induced acute kidney injury (IRI-induced AKI) is far from clear. In this study, we try to investigate the effect and possible mechanisms of HHcy on IRI-induced AKI. Methods Twenty C57/BL6 mice were reared with a regular diet or high methionine diet for 2 weeks (to generate HHcy mice); after that, mice were subgrouped to receive sham operation or ischemia-reperfusion surgery. Twenty four hour after reperfusion, serum creatinine, blood urea nitrogen, and Malondialdehyde (MDA) were measured. H&E staining for tubular injury, western blot for γH2AX, JNK, p-JNK, and cleaved caspase 3, and TUNEL assay for tubular cell apoptosis were also performed. Results Our results showed that HHcy did not influence the renal function and histological structure, as well as the levels of MDA, γH2AX, JNK, p-JNK, and tubular cell apoptosis in control mice. However, in IRI-induced AKI mice, HHcy caused severer renal dysfunction and tubular injury, higher levels of oxidative stress, DNA damage, JNK pathway activation, and tubular cell apoptosis. Conclusion Our results demonstrated that HHcy could exacerbate IRI-induced AKI, which may be achieved through promoting oxidative stress, DNA damage, JNK pathway activation, and consequent apoptosis.


Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 333-342
Author(s):  
Yawei Feng ◽  
Jun Liu ◽  
Ranliang Wu ◽  
Peng Yang ◽  
Zhiqiang Ye ◽  
...  

AbstractBackground and aimAcute kidney injury (AKI) is a common complication of sepsis. Long noncoding RNA nuclear-enriched abundant transcript 1 (NEAT1) plays a vital role in various diseases, including AKI. This study aimed to investigate the function and mechanism of NEAT1 in sepsis-induced AKI.Materials and methodsA septic AKI model was established by treating HK-2 cells with lipopolysaccharide (LPS). The levels of NEAT1 and miR-22-3p were measured by quantitative real-time PCR. Cell apoptosis was assessed by flow cytometry. The levels of apoptosis-related protein and autophagy-related factors were examined by the western blot assay. An enzyme-linked immunosorbent assay was used to calculate the contents of inflammatory factors. The interaction between NEAT1 and miR-22-3p was validated by dual-luciferase reporter assay, RNA immunoprecipitation assay, and RNA pull-down assay. The levels of nuclear factor (NF)-κB pathway-related proteins were evaluated by the western blot assay.ResultsNEAT1 was upregulated, while miR-22-3p was downregulated in patients with sepsis and in LPS-stimulated HK-2 cells. LPS treatment triggered cell apoptosis, autophagy, and inflammatory response in HK-2 cells. NEAT1 knockdown attenuated LPS-induced cell injury. NEAT1 modulated LPS-triggered cell injury by targeting miR-22-3p. Furthermore, NEAT1 regulated the NF-κB pathway by modulating miR-22-3p.ConclusionDepletion of NEAT1 alleviated sepsis-induced AKI via regulating the miR-22-3p/NF-κB pathway.


Nephrology ◽  
2010 ◽  
Vol 15 (1) ◽  
pp. 93-101 ◽  
Author(s):  
JUN NAKAZAWA ◽  
KEIJI ISSHIKI ◽  
TOSHIRO SUGIMOTO ◽  
SHIN-ICHI ARAKI ◽  
SHINJI KUME ◽  
...  

2018 ◽  
Vol 132 (21) ◽  
pp. 2383-2385 ◽  
Author(s):  
Katie L. Connor ◽  
Laura Denby

Accurate biomarkers that both predict the progression to, and detect the early stages of chronic kidney disease (CKD) are lacking, resulting in difficulty in identifying individuals who could potentially benefit from targeted intervention. In a recent issue [Clinical Science (2018) 132, 2121–2133], Cui et al. examine the ability of urinary angiotensinogen (uAGT) to predict the progression of acute kidney injury (AKI) to CKD. They principally employ a murine ischaemia reperfusion injury model to study this and provide data from a small prospective study of patients with biopsy proven acute tubular necrosis. The authors suggest that uAGT is a dynamic marker of renal injury that could be used to predict the likelihood of structural recovery following AKI. Here we comment on their findings, exploring the clinical utility of uAGT as a biomarker to predict AKI to CKD transition and perhaps more controversially, to discuss whether the early renin–angiotensin system blockade following AKI represents a therapeutic target.


2021 ◽  
Vol 28 ◽  
Author(s):  
Xiaoqin Liu ◽  
Qingzhao Li ◽  
Lixin Sun ◽  
Limei Chen ◽  
Yue Li ◽  
...  

Aims: This study aims to verify if miR-30e-5p targets Beclin1 (BECN1), a key regulator of autophagy, and investigate the function of miR-30e-5p and Beclin1 through mediating autophagy and apoptosis in contrast-induced acute kidney injury (CI-AKI). Methods: Human renal tubular epithelial HK-2 cells were treated with Urografin to construct a cell model of CI-AKI. Real-time reverse transcription–polymerase chain reaction was used to detect gene expression. The dual-luciferase reporting assay and endogenous validation were used to verify targeting and regulating function. The expressions of protein were detected using Western blot. Cell proliferation was detected using methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. Cell apoptosis was detected using terminal-deoxynucleoitidyl transferase mediated nick end labeling assay, and autophagy was detected using transmission electron microscopy. Results: HK-2 cells exposed to Urografin for 2 h induced a significant increase in miR-30e-5p. miR-30e-5p had a targeting effect on Beclin1. Moreover, Urografin exposure can enhance cell apoptosis by increasing caspase 3 gene expression and inhibiting autophagy, which was induced by decreased Beclin1 expression regulated by miR-30e-5p, thereby resulting in renal cell injury. Downregulation of miR-30e-5p or upregulation of Beclin1 restored cell vitality by promoting autophagy and suppressing apoptosis in Urografin-treated cells. Conclusions: Urografin increased the expression of miR-30e-5p in HK-2 cells and thus decreased Beclin1 levels to inhibit autophagy, but induced apoptosis, which may be the mechanism for CI-AKI.


2020 ◽  
Vol 319 (6) ◽  
pp. F1015-F1026
Author(s):  
Wei Zhang ◽  
Yinjie Guan ◽  
George Bayliss ◽  
Shougang Zhuang

Sepsis-associated acute kidney injury (SA-AKI) is associated with high mortality rates, but clinicians lack effective treatments except supportive care or renal replacement therapies. Recently, histone deacetylase (HDAC) inhibitors have been recognized as potential treatments for acute kidney injury and sepsis in animal models; however, the adverse effect generated by the use of pan inhibitors of HDACs may limit their application in people. In the present study, we explored the possible renoprotective effect of a selective class IIa HDAC inhibitor, TMP195, in a murine model of SA-AKI induced by lipopolysaccharide (LPS). Administration of TMP195 significantly reduced increased serum creatinine and blood urea nitrogen levels and renal damage induced by LPS; this was coincident with reduced expression of HDAC4, a major isoform of class IIa HDACs, and elevated histone H3 acetylation. TMP195 treatment following LPS exposure also reduced renal tubular cell apoptosis and attenuated renal expression of neutrophil gelatinase-associated lipocalin and kidney injury molecule-1, two biomarkers of tubular injury. Moreover, LPS exposure resulted in increased expression of BAX and cleaved caspase-3 and decreased expression of Bcl-2 and bone morphogenetic protein-7 in vivo and in vitro; TMP195 treatment reversed these responses. Finally, TMP195 inhibited LPS-induced upregulation of multiple proinflammatory cytokines/chemokines, including intercellular adhesion molecule-1, monocyte chemoattractant protein-1, tumor necrosis factor-α, and interleukin-1β, and accumulation of inflammatory cells in the injured kidney. Collectively, these data indicate that TMP195 has a powerful renoprotective effect in SA-AKI by mitigating renal tubular cell apoptosis and inflammation and suggest that targeting class IIa HDACs might be a novel therapeutic strategy for the treatment of SA-AKI that avoids the unintended adverse effects of a pan-HDAC inhibitor.


Sign in / Sign up

Export Citation Format

Share Document