Effects of different preheat treatments on volatile compounds of camellia ( Camellia oleifera Abel .) seed oil and formation mechanism of key aroma compounds

Author(s):  
Junhua He ◽  
Xuehui Wu ◽  
Yue Zhou ◽  
Jiahui Chen
Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 308
Author(s):  
Jing Wang ◽  
Xuxiao Tang ◽  
Qiulu Chu ◽  
Mengyu Zhang ◽  
Yingzhong Zhang ◽  
...  

Volatile flavor of edible oils is an important quality index and factor affecting consumer choice. The purpose of this investigation was to characterize virgin Camellia oleifera seed oil (VCO) samples from different locations in southern China in terms of their volatile compounds to show the classification of VCO with respect to geography. Different samples from 20 producing VCO regions were collected in 2020 growing season, at almost the same maturity stage, and processed under the same conditions. Headspace solid-phase microextraction (HS-SPME) with a gas chromatography–mass spectrometer system (GC–MS) was used to analyze volatile compounds. A total of 348 volatiles were characterized, including aldehydes, ketones, alcohols, acids, esters, alkenes, alkanes, furans, phenols, and benzene; the relative contents ranged from 7.80–58.68%, 1.73–12.52%, 2.91–37.07%, 2.73–46.50%, 0.99–12.01%, 0.40–14.95%, 0.00–27.23%, 0.00–3.75%, 0.00–7.34%, and 0.00–1.55%, respectively. The VCO geographical origins with the largest number of volatile compounds was Xixiangtang of Guangxi (L17), and the least was Beireng of Hainan (L19). A total of 23 common and 98 unique volatile compounds were detected that reflected the basic and characteristic flavor of VCO, respectively. After PCA, heatmap and PLS-DA analysis, Longchuan of Guangdong (L8), Qingshanhu of Jiangxi (L16), and Panlong of Yunnan (L20) were in one group where the annual average temperatures are relatively low, where annual rainfalls are also low. Guangning of Guangdong (L6), Yunan of Guangdong (L7), Xingning of Guangdong (L9), Tianhe of Guangdong (L10), Xuwen of Guangdong (L11), and Xiuying of Hainan (L18) were in another group where the annual average temperatures are relatively high, and the altitudes are low. Hence, volatile compound distributions confirmed the differences among the VCO samples from these geographical areas, and the provenance difference evaluation can be carried out by flavor.


Molecules ◽  
2016 ◽  
Vol 21 (5) ◽  
pp. 479 ◽  
Author(s):  
Issara Sramala ◽  
Wichchunee Pinket ◽  
Pawinee Pongwan ◽  
Suwatchai Jarussophon ◽  
Kittiwut Kasemwong

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Lijun Nan ◽  
Liyuan Liu ◽  
Yashan Li ◽  
Jing Huang ◽  
Yanjun Wang ◽  
...  

A total of 55 volatiles including esters (29, 52.73%), alcohols (10, 18.18%), acids (3, 5.45%), alkanes (8, 14.55%), and other components (5, 9.09%) were evaluated in five regions. Total concentrations were 0.05–222.23 mg/L, which covered the highest esters (222.23 mg/L) and alcohols (120.65 mg/L) in Turpan, acid (0.53 mg/L) in Shihezi, and alkanes (1.43 mg/L) and others (3.10 mg/L) in the Ili River valley. It proved that numbers and concentrations of volatile compounds, including common ingredients of variety, were closely linked to ecological characteristics of a region. Esters and alcohols were the major ingredients in Xinjiang Cabernet Sauvignon wine. Additionally, appellation could affect performance of concentration, ODE, and OTH, especially for the same flavor substance by fermentation, aging, and even formation and transformation in wines. Therefore, three conditions for formation of flavors were successively appellations, metabolism and fermentation, and and appropriate altering according to technology and their decisive role in wine quality. Each volatile compound had its own flavor, the combination of which complicated the flavor. The unique materials in the region were grounded for the development of products with corresponding flavors by producing substrate for fermentation. When choosing a wine you enjoy, the right appellation should be considered first.


1998 ◽  
Vol 4 (1) ◽  
pp. 14-17 ◽  
Author(s):  
Mitsuya SHIMODA ◽  
Yuji NAKADA ◽  
Masatosi NAKASHIMA ◽  
Yutaka OSAJIMA

2021 ◽  
Vol 12 ◽  
Author(s):  
Yanqin Ma ◽  
Tian Li ◽  
Xiaoyu Xu ◽  
Yanyu Ji ◽  
Xia Jiang ◽  
...  

Petit Manseng is widely used for fermenting sweet wine and is popular among younger consumers because of its sweet taste and attractive flavor. To understand the mechanisms underlying spontaneous fermentation of Petit Manseng sweet wine in Xinjiang, the dynamic changes in the microbial population and volatile compounds were investigated through high-throughput sequencing (HTS) and headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography-mass spectrometry (GC-MS) technology, respectively. Moreover, the relationship between the microbial population and volatile compounds was deduced via multivariate data analysis. Candida and Mortierella were dominant genera in Petit Manseng wine during spontaneous fermentation. Many fermentative aroma compounds, including ethyl octanoate, isoamyl acetate, ethyl butyrate, ethyl decanoate, isoamyl alcohol, ethyl laurate, isopropyl acetate, hexanoic acid, and octanoic acid, were noted and found to be responsible for the strong fruity and fatty aroma of Petit Manseng sweet wine. Multivariate data analysis indicated that the predominant microorganisms contributed to the formation of these fermentative aroma compounds. Hannaella and Neomicrosphaeropsis displayed a significantly positive correlation with the 6-methylhept-5-en-2-one produced. The current results provide a reference for producing Petit Manseng sweet wine with desirable characteristics.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 71
Author(s):  
Bo Wu ◽  
Chengjiang Ruan ◽  
Asad Hussain Shah ◽  
Denghui Li ◽  
He Li ◽  
...  

Tea oil camellia (Camellia oleifera), an important woody oil tree, is a source of seed oil of high nutritional and medicinal value that is widely planted in southern China. However, there is no report on the identification of the miRNAs involved in lipid metabolism and seed development in the high- and low-oil cultivars of tea oil camellia. Thus, we explored the roles of miRNAs in the key periods of oil formation and accumulation in the seeds of tea oil camellia and identified miRNA–mRNA regulatory modules involved in lipid metabolism and seed development. Sixteen small RNA libraries for four development stages of seed oil biosynthesis in high- and low-oil cultivars were constructed. A total of 196 miRNAs, including 156 known miRNAs from 35 families, and 40 novel miRNAs were identified, and 55 significantly differentially expressed miRNAs were found, which included 34 upregulated miRNAs, and 21 downregulated miRNAs. An integrated analysis of the miRNA and mRNA transcriptome sequence data revealed that 10 miRNA–mRNA regulatory modules were related to lipid metabolism; for example, the regulatory modules of ath-miR858b–MYB82/MYB3/MYB44 repressed seed oil biosynthesis, and a regulation module of csi-miR166e-5p–S-ACP-DES6 was involved in the formation and accumulation of oleic acid. A total of 23 miRNA–mRNA regulatory modules were involved in the regulation of the seed size, such as the regulatory module of hpe-miR162a_L-2–ARF19, involved in early seed development. A total of 12 miRNA–mRNA regulatory modules regulating growth and development were identified, such as the regulatory modules of han-miR156a_L+1–SPL4/SBP2, promoting early seed development. The expression changes of six miRNAs and their target genes were validated using quantitative real-time PCR, and the targeting relationship of the cpa-miR393_R-1–AFB2 regulatory module was verified by luciferase assays. These data provide important theoretical values and a scientific basis for the genetic improvement of new cultivars of tea oil camellia in the future.


2013 ◽  
Vol 54 (1) ◽  
pp. 683-690 ◽  
Author(s):  
Qianqian Xu ◽  
Jianbin Liu ◽  
Huanlu Song ◽  
Tingting Zou ◽  
Ye Liu ◽  
...  

2020 ◽  
Vol 43 (8) ◽  
pp. 1391-1402 ◽  
Author(s):  
Gabriele Zanota Castiglioni ◽  
Giulia Bettio ◽  
Carla Roberta Matte ◽  
Rosangela Assis Jacques ◽  
Allan Dos Santos Polidoro ◽  
...  

2019 ◽  
Vol 8 (2) ◽  
pp. 903-914
Author(s):  
Lin Wang ◽  
Zhuo Chen ◽  
Bo Han ◽  
Wenxia Wu ◽  
Qiaoling Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document