scholarly journals Characterization of the Volatile Compounds in Camellia oleifera Seed Oil from Different Geographic Origins

Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 308
Author(s):  
Jing Wang ◽  
Xuxiao Tang ◽  
Qiulu Chu ◽  
Mengyu Zhang ◽  
Yingzhong Zhang ◽  
...  

Volatile flavor of edible oils is an important quality index and factor affecting consumer choice. The purpose of this investigation was to characterize virgin Camellia oleifera seed oil (VCO) samples from different locations in southern China in terms of their volatile compounds to show the classification of VCO with respect to geography. Different samples from 20 producing VCO regions were collected in 2020 growing season, at almost the same maturity stage, and processed under the same conditions. Headspace solid-phase microextraction (HS-SPME) with a gas chromatography–mass spectrometer system (GC–MS) was used to analyze volatile compounds. A total of 348 volatiles were characterized, including aldehydes, ketones, alcohols, acids, esters, alkenes, alkanes, furans, phenols, and benzene; the relative contents ranged from 7.80–58.68%, 1.73–12.52%, 2.91–37.07%, 2.73–46.50%, 0.99–12.01%, 0.40–14.95%, 0.00–27.23%, 0.00–3.75%, 0.00–7.34%, and 0.00–1.55%, respectively. The VCO geographical origins with the largest number of volatile compounds was Xixiangtang of Guangxi (L17), and the least was Beireng of Hainan (L19). A total of 23 common and 98 unique volatile compounds were detected that reflected the basic and characteristic flavor of VCO, respectively. After PCA, heatmap and PLS-DA analysis, Longchuan of Guangdong (L8), Qingshanhu of Jiangxi (L16), and Panlong of Yunnan (L20) were in one group where the annual average temperatures are relatively low, where annual rainfalls are also low. Guangning of Guangdong (L6), Yunan of Guangdong (L7), Xingning of Guangdong (L9), Tianhe of Guangdong (L10), Xuwen of Guangdong (L11), and Xiuying of Hainan (L18) were in another group where the annual average temperatures are relatively high, and the altitudes are low. Hence, volatile compound distributions confirmed the differences among the VCO samples from these geographical areas, and the provenance difference evaluation can be carried out by flavor.

Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 71
Author(s):  
Bo Wu ◽  
Chengjiang Ruan ◽  
Asad Hussain Shah ◽  
Denghui Li ◽  
He Li ◽  
...  

Tea oil camellia (Camellia oleifera), an important woody oil tree, is a source of seed oil of high nutritional and medicinal value that is widely planted in southern China. However, there is no report on the identification of the miRNAs involved in lipid metabolism and seed development in the high- and low-oil cultivars of tea oil camellia. Thus, we explored the roles of miRNAs in the key periods of oil formation and accumulation in the seeds of tea oil camellia and identified miRNA–mRNA regulatory modules involved in lipid metabolism and seed development. Sixteen small RNA libraries for four development stages of seed oil biosynthesis in high- and low-oil cultivars were constructed. A total of 196 miRNAs, including 156 known miRNAs from 35 families, and 40 novel miRNAs were identified, and 55 significantly differentially expressed miRNAs were found, which included 34 upregulated miRNAs, and 21 downregulated miRNAs. An integrated analysis of the miRNA and mRNA transcriptome sequence data revealed that 10 miRNA–mRNA regulatory modules were related to lipid metabolism; for example, the regulatory modules of ath-miR858b–MYB82/MYB3/MYB44 repressed seed oil biosynthesis, and a regulation module of csi-miR166e-5p–S-ACP-DES6 was involved in the formation and accumulation of oleic acid. A total of 23 miRNA–mRNA regulatory modules were involved in the regulation of the seed size, such as the regulatory module of hpe-miR162a_L-2–ARF19, involved in early seed development. A total of 12 miRNA–mRNA regulatory modules regulating growth and development were identified, such as the regulatory modules of han-miR156a_L+1–SPL4/SBP2, promoting early seed development. The expression changes of six miRNAs and their target genes were validated using quantitative real-time PCR, and the targeting relationship of the cpa-miR393_R-1–AFB2 regulatory module was verified by luciferase assays. These data provide important theoretical values and a scientific basis for the genetic improvement of new cultivars of tea oil camellia in the future.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Daisuke Suzuki ◽  
Yuko Sato ◽  
Hiroshi Kamasaka ◽  
Takashi Kuriki ◽  
Hirotoshi Tamura

Abstract Volatile compounds in foods are a significant factor that affects food intake and preference. However, volatile components in edible oils are poorly understood due to a strong matrix effect. In this study, we developed a method of extracting volatile compounds from extra virgin coconut oil (EVCO) by means of oiling-out assisted liquid-liquid extraction (OA-LLE). Consequently, 44 aroma compounds were isolated and identified from only 5 g of EVCO. Various aroma compounds were detected in addition to δ-lactones. The ratio of the natural abundance of the enantiomers of δ-lactones in EVCO was also revealed. Compared with the conventional methods of solvent assisted flavor evaporation (SAFE) and head-space solid-phase micro extraction (HS-SPME), OA-LLE was able to isolate a wide range and large number of volatile compounds from EVCO without leaving oil residues. Therefore, isolating aroma compounds from edible oil based on the oiling-out effect should provide an innovative extraction method.


Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 110
Author(s):  
Katalin Szabo ◽  
Francisc Vasile Dulf ◽  
Bernadette-Emőke Teleky ◽  
Panagiota Eleni ◽  
Christos Boukouvalas ◽  
...  

The circular economy action plan involves principles related to food waste reduction and integration of recovered nutrients to the market. In this context, the present study aims to highlight the valuable bioactive components found in tomato processing by-products (carotenoids, phenolic compounds and fatty acids) influenced by industrial pre-treatments, particularly cold break (CB) process at 65–75 °C and hot break (HB) process at 85–95 °C. The fatty acid profile of the tomato seed oil was examined by gas chromatography coupled to mass spectrometry (GC-MS), individual carotenoid and phenolic compositions were determined by high performance liquid chromatography (HPLC) and the viscoelastic properties were evaluated by rheological measurements. The physicochemical properties revealed appropriate characteristics of the tomato seed oil to fit the standards of generally accepted edible oils, for both CB and HB derived samples, however, significant qualitative and quantitative differences were detected in their phenolic composition and carotenoids content. Lycopene (37.43 ± 1.01 mg/100 mL) was a major carotenoid in the examined samples, linoleic acid was the main fatty acid (61.73%) detected in the tomato seed oil and syringic acid appeared to be one of two major phenolic acids detected in the samples of CB process. Our findings extend the boundaries of tomato processing industry by validating that tomato seed oil is a bioactive rich edible oil with additional health benefits, which can be integrated in functional food products.


Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 75
Author(s):  
Alexandra Nanou ◽  
Athanasios Mallouchos ◽  
Efstathios Z. Panagou

Olives are characterized by a wide variety of volatile compounds, which are primarily products of microbial metabolism that contribute to the organoleptic characteristics of the final product and especially to its flavor. The volatilome in Spanish-style processed green olives of Conservolea and Halkidiki cultivars were analytically characterized. A solid phase micro-extraction (SPME) technique was used for the extraction of volatile components from the olive samples that were further identified and quantified by gas chromatography coupled to mass spectrometry (GC–MS). Eighty-eight (88) compounds were identified, including several aldehydes, ketones, acids, terpenes, but mainly esters and alcohols. Results showed that there were no significant differences in the qualitative composition of the volatile profiles between the two varieties. Acetic and propanoic acids, thymol, ethanol, 2-butanol, 1-propanol, ethyl acetate as well as ethyl propanoate were the most dominant compounds found in both cultivars. However, some quantitative differences were spotted between the two varieties regarding some of the identified volatile compounds. The quantity of 2-butanol was higher in the Halkidiki variety, while propanoic acid ethyl ester was found in higher amounts in the Conservolea variety. Furthermore, differences in the quantities of some volatile compounds over time were observed. Most of the identified compounds presented an increasing trend during storage.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3612
Author(s):  
Marinos Xagoraris ◽  
Alexandra Skouria ◽  
Panagiota-Kyriaki Revelou ◽  
Eleftherios Alissandrakis ◽  
Petros A. Tarantilis ◽  
...  

This study aimed at an experimental design of response surface methodology (RSM) in the optimization of the dominant volatile fraction of Greek thyme honey using solid-phase microextraction (SPME) and analyzed by gas chromatography-mass spectrometry (GC-MS). For this purpose, a multiple response optimization was employed using desirability functions, which demand a search for optimal conditions for a set of responses simultaneously. A test set of eighty thyme honey samples were analyzed under the optimum conditions for validation of the proposed model. The optimized combination of isolation conditions was the temperature (60 °C), equilibration time (15 min), extraction time (30 min), magnetic stirrer speed (700 rpm), sample volume (6 mL), water: honey ratio (1:3 v/w) with total desirability over 0.50. It was found that the magnetic stirrer speed, which has not been evaluated before, had a positive effect, especially in combination with other factors. The above-developed methodology proved to be effective in the optimization of isolation of specific volatile compounds from a difficult matrix, like honey. This study could be a good basis for the development of novel RSM for other monofloral honey samples.


Molecules ◽  
2016 ◽  
Vol 21 (5) ◽  
pp. 479 ◽  
Author(s):  
Issara Sramala ◽  
Wichchunee Pinket ◽  
Pawinee Pongwan ◽  
Suwatchai Jarussophon ◽  
Kittiwut Kasemwong

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1180
Author(s):  
Xiaoyu Yin ◽  
Qian Chen ◽  
Qian Liu ◽  
Yan Wang ◽  
Baohua Kong

Smoking is mainly used to impart desirable flavour, colour and texture to the products. Various food smoking methods can be divided into traditional and industrial methods. The influences of three different smoking methods, including traditional smouldering smoke (TSS), industrial smouldering smoke (ISS) and industrial liquid smoke (ILS), on quality characteristics, sensory attributes and flavour profiles of Harbin red sausages were studied. The smoking methods had significant effects on the moisture content (55.74–61.72 g/100 g), L*-value (53.85–57.61), a*-value (11.97–13.15), b*-value (12.19–12.92), hardness (24.25–29.17 N) and chewiness (13.42–17.32). A total of 86 volatile compounds were identified by headspace solid phase microextraction combined with comprehensive two-dimensional gas chromatography mass spectrometry (GC × GC-qMS). Among them, phenolic compounds were the most abundant compounds in the all sausages. Compared with sausages smoked with smouldering smoke, the ILS sausages showed the highest content of volatile compounds, especially phenols, alcohols, aldehydes and ketones. Principal component analysis showed that the sausages smoked with different methods had a good separation based on the quality characteristics and GC × GC-qMS data. These results will facilitate optimising the smoking methods in the industrial production of smoked meat products.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1258
Author(s):  
Nermina Spaho ◽  
Fuad Gaši ◽  
Erich Leitner ◽  
Milenko Blesić ◽  
Asima Akagić ◽  
...  

This study was conducted with the aim of developing fruit spirits by utilizing old (autochthonous) apple and pear cultivars that can be attractive to both consumers and producers. Consumers of spirits could enjoy the unique flavor, and producers could gain an opportunity for brand development. In total, eight old apple cultivars (Sarija, Žuja, Samoniklica, Prijedorska zelenika, Bobovec, Masnjača, Lijepocvjetka, and Šarenika) and three pear cultivars (Budaljača, Krakača, and Kalićanka) from Bosnia and Herzegovina were used for the spirits production and for characterizing the flavor of distillates. Golden Delicious was used as a representative of commercial apple cultivar. The aroma profile was conducted through the identification of minor volatile organic compounds (VOCs) and the sensory perception of spirits. Analysis of the VOCs was performed by gas chromatography mass spectroscopy (GC/MS) techniques after enrichment via solid-phase microextraction (SPME). Sensory evaluation was performed by 12 trained panelists. Overall, 35 minor volatile compounds were found in spirits: 13 esters, 7 alcohols, 6 acids, 5 terpenes, and 4 aldehydes. Significant differences were detected in the distribution and quantity of the VOCs, which were fruit cultivar-dependent. Spirits made from Šarenika apple cultivar showed the largest amount of all acids, especially short- and medium-chain fatty acids; however, this richness was not correlated with pleasant sensory attributes. Spirits obtained from Prijedorska zelenika and Masnjača apple cultivars had the best sensory attributes. Budeljača and Krakača pears are promising cultivars as flavoring in spirits production.


Author(s):  
Mariana Muelbert ◽  
Laura Galante ◽  
Tanith Alexander ◽  
Jane E. Harding ◽  
Chris Pook ◽  
...  

Abstract Background Volatile compounds in breastmilk (BM) likely influence flavor learning and, through the cephalic phase response, metabolism, and digestion. Little is known about the volatile compounds present in preterm BM. We investigated whether maternal or infant characteristics are associated with the profile of volatile compounds in preterm BM. Methods Using solid-phase microextraction coupled with gas chromatography/mass spectrometry, we analyzed volatile compounds in 400 BM samples collected from 170 mothers of preterm infants. Results Forty volatile compounds were detected, mostly fatty acids and their esters (FA and FAe), volatile organic compounds (VOCs), aldehydes, terpenoids, alcohols, and ketones. The relative concentration of most FA and FAe increased with advancing lactation and were lower in BM of most socially deprived mothers and those with gestational diabetes (p < 0.05), but medium-chain FAs were higher in colostrum compared to transitional BM (p < 0.001). Infant sex, gestational age, and size at birth were not associated with the profile of volatile compounds in preterm BM. Conclusions Sensory-active volatile FA and FAe are the major contributors to the smell of preterm BM. The associations between lactation stage, maternal characteristics, and volatile compounds, and whether differences in volatile compounds may affect feeding behavior or metabolism, requires further research. Impact Sensory-active volatile FAs are major contributors to the smell of preterm BM and are influenced by the lactation stage and maternal characteristics. Longitudinal analysis of volatile compounds in preterm BM found that FAs increased with advancing lactation. Colostrum had a higher concentration of medium-chain FAs compared to transitional BM and the concentration of these is associated with socioeconomic status, gestational diabetes, and ethnicity.


Sign in / Sign up

Export Citation Format

Share Document