Effects of Blanching and Hot Air Drying Conditions on the Physicochemical and Technological Properties of Yellow Passion Fruit (Passiflora edulis Var. Flavicarpa) by-Products

2016 ◽  
Vol 40 (3) ◽  
pp. e12425 ◽  
Author(s):  
Y. Duarte ◽  
A. Chaux ◽  
N. Lopez ◽  
E. Largo ◽  
C. Ramírez ◽  
...  
2019 ◽  
Vol 50 (3) ◽  
pp. 150-158 ◽  
Author(s):  
Nnaemeka R. Nwakuba

High-energy demand of convective crop dryers has prompted study on optimisation of dryer energy consumption for optimal and cost effective drying operation. This paper presents response surface optimisation of energy consumption of a solar-electric dryer during hot air drying of tomato slices. Drying experiments were conducted with 1 kg batch of tomato samples using a 33 central composite design of Design Expert 7.0 Statistical Package. Three levels of air velocity (1.0, 1.5 and 2.0 ms–1), slice thickness (10, 15 and 20 mm) and air temperature (50, 60 and 70°C) were used to investigate their effects on energy consumption. A quadratic model was obtained with a high coefficient of determination (R2) of 0.9825. The model was validated using the statistical analysis of the experimental parameters and normal probability plot of the energy consumption residuals. Results obtained indicate that the process parameters had significant quadratic effects (P<0.05) on the energy consumption. The energy consumption varied between 5.42 kWh and 99.78 kWh; whereas the specific energy consumption varied between 5.53 kWhkg–1 and 150.61 kWhkg–1. The desirability index method was applied in predicting the ideal energy consumption and drying conditions for tomato slices in a solar-electric dryer. At optimum drying conditions of 1.94 ms–1 air velocity, 10.36 mm slice thickness and 68.4°C drying air temperature, the corresponding energy consumption was 5.6 8kWh for maximum desirability index of 0.989. Thermal utilisation efficiency (TUE) of the sliced tomato samples ranged between 15 ≤TUE ≤58%. The maximum TUE value was obtained at 70°C air temperature, 1.0 ms–1 air velocity and 10 mm slice thickness treatment combination, whereas the minimum TUE was obtained at 50°C air temperature, 2.0 ms–1 air velocity and 20 mm slice thickness. Recommendation and prospect for further improvement of the dryer system were stated.


Author(s):  
MILAD ASGARPOUR KHANSARY ◽  
FARZANEH KAZEMI QALEH JOOGH ◽  
ASHKAN HOSSEINI ◽  
JABER SAFARI ◽  
EDRIS ALLAHYARI ◽  
...  

Drying of a coated paper is modeled and simulated. The paper sheet is assumed to form three zones, and each zone has its own drying mechanism. Coupling of energy and mass balances must be used in order to solve differential equations. The simulations are carried out in various drying conditions i.e., only hot air drying, only radiant drying, and mixed hot air-radiant drying. Also the effect of one side and two side assumption on evaporation is studied. Effect of venting air speed and radiant heat source presence and its distance from the drying surface on the drying of a coated paper has been studied. It is found that both distance and venting air speed are inversely related to drying in mixed hot air-radiant drying. Both surfaces participate in evaporation however, during the last time of drying, no difference between the upper and the bottom surfaces exist.


Author(s):  
John M. Cahill

Processors of citrus fruit are faced with disposal of the pulp left over after juice is extracted from the fruit. Generally, the pulp is dried in steam or oil fired dryers and then sold as cattle feed. If disposal of the pulp is the prime factor of interest to the operator; shredding and hot air drying is sufficient. For more efficient removal of water from the pulp and the obtainment of other by-products, mainly citrus molasses and stripper oil, consideration should be given to the installation of presses and a molasses evaporator. Most authorities will agree that water can be evaporated more efficiently in a multiple effect evaporator than in a hot air dryer. Presses and an evaporator represent considerable investment, therefore the decision to install a Molasses Plant must be weighed carefully, balancing potential savings against the installed cost. Paper published with permission.


Author(s):  
Nnaemeka R. Nwakuba

High-energy demand of convective crop dryers has prompted study on optimization of dryer energy consumption for optimal and cost effective drying operation. This paper presents response surface optimization of energy consumption of a solar-electric dryer during hot air drying of tomato slices. Drying experiments were conducted with 1kg batch of tomato samples using a 33Central Composite Design (CCD) of Design Expert 7.0 Statistical Package. Three levels of air velocity (1.0, 1.5 and 2.0ms–1), slice thickness (10, 15 and 20mm) and air temperature (50, 60 and 70oC) were used to investigate their effects on energy consumption. A quadratic model was obtained with a high coefficient of determination (R2) of 0.9825. The model was validated using the statistical analysis of the experimental parameters and normal probability plot of the energy consumption residuals. Results obtained indicate that the process parameters had significant quadratic effects (p < 0.05) on the energy consumption. The energy consumption varied between 5.42kWh and 99.78kWh; whereas the specific energy consumption varied between 5.53kWhkg–1and 150.61kWhkg–1. The desirability index method was applied in predicting the ideal energy consumption and drying conditions for tomato slices in a solar-electric dryer. At optimum drying conditions of 1.94ms–1air velocity, 10.36mm slice thickness and 68.4oC drying air temperature, the corresponding energy consumption was 5.68kWh for maximum desirability index of 0.989. Thermal utilization efficiency (TUE) of the sliced tomato samples ranged between 15 ≤ TUE ≤ 58%. The maximum TUE value was obtained at 70oC air temperature, 1.0ms–1air velocity and 10mm slice thickness treatment combination, whereas the minimum TUE was obtained at 50oC air temperature, 2.0ms–1air velocity and 20mm slice thickness. Recommendation and prospect for further improvement of the dryer system were stated.


2018 ◽  
Vol 12 (3) ◽  
pp. 2145-2157 ◽  
Author(s):  
Begoña de Ancos ◽  
Concepción Sánchez-Moreno ◽  
Lorenzo Zacarías ◽  
María Jesús Rodrigo ◽  
Sonia Sáyago Ayerdí ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ernest Ekow Abano ◽  
Joshua Akanson ◽  
Nazir Kizzie-Hayford

The objective of this study was to provide the optimum drying conditions to produce high-quality dried tiger nuts using hot-air drying. For this, we evaluated the effect of the whole, halved, and pulverized tiger nuts and air temperature (50 to 70°C) on the drying kinetics and quality of tiger nuts. The drying process generally followed a constant rate in the first 3 hours and a falling regime. We found the optimum drying conditions for tiger nuts to be crushed before convective hot-air drying at a temperature of 70°C. At this optimum condition, the predicted drying time, vitamin C content, reducing sugars, browning, brightness, redness, and yellowness was 780 min, 22.9 mg/100 mg dry weight, 157.01 mg/100 g dry weight, 0.21 Abs unit, 56.97, 1.6, and 17.0, respectively. The tiger nut’s reducing sugars increased from the 130.8 mg/100 dry weight in the raw tiger nuts to between 133.11 and 158.18 mg/100 dry weight after drying. The vitamin C degradation rate was highest in the uncut tiger nuts (32-35%) while in the halved and the pulverized samples, it was between 12 and 17%. The crushed samples’ effective moisture removal increased between 5.6- and 6.75-fold at the different air temperatures than that of the intact tiger nuts. The activation energy was 18.17 kJ/mol for the unbroken, 14.78 kJ/mol for the halved, and 26.61 kJ/mol for the pulverized tiger nut samples. The model MR = 0.997   exp − 0.02 t 1.266 + 0.0000056 t was the most suitable thin-layer drying model among the models examined for convective hot-air drying of tiger nuts. It is advisable to crush tiger nut before hot-air drying to produce better-quality flour for making milk beverages, cakes, biscuits, bread, porridge, and tiger nut-based breakfast cereals.


Beverages ◽  
2018 ◽  
Vol 4 (4) ◽  
pp. 80 ◽  
Author(s):  
Van Nguyen ◽  
Minh Le

(1) Background: Drying is an important process in the research of bioactive compounds. The aim of this study was to identify an optimal condition to dry carrot peel. (2) Methods: In this study, various drying conditions including hot-air (50 °C and 100 °C), vacuum (50 °C and 100 °C), microwave (600 W and 1200 W) and freeze dying (−45 °C) were applied, and the phytochemical yield and antioxidant activity of carrot peel were then assessed. (3) Results: The results showed that the highest amount of phytochemical compounds was achieved by microwave drying at 1200 W, followed by microwave drying at 600 W and freeze drying at −45 °C. In contrast, hot-air drying resulted in the lowest level of phytochemical compounds. Regarding the antioxidant activity of carrot peel, microwave drying at 1200 W was an optimal condition as it possessed the best antioxidant activity whereas hot-air, vacuum and freeze drying were not effective methods for retaining antioxidant activity. (4) Conclusions: Based on the results obtained from this study, microwave drying at 1200 W is recommended to dry carrot peel for potential application in the nutraceutical, beverage and/or functional food industries.


2020 ◽  
Vol 4 (1) ◽  
pp. 44
Author(s):  
Mukesh Guragain ◽  
Pranabendu Mitra

The preservation of perishable horseradish crop is essential to increase the shelf-life and supply year-round. Hot air-drying method is commercially viable for preserving fruits and vegetables. However, drying conditions such as drying temperature affect the drying kinetic and the final quality of dried products. It is necessary to understand how drying temperature and blanching affect the drying kinetics of horseradish for the prediction of the right drying conditions. The objective of this study was to investigate the hot air-drying kinetics by fitting commonly used five empirical models to establish right hot air-drying conditions for drying of horseradish. The unblanched (control, C) and blanched (B) horseradish slices were dried at 50, 70 and 85℃ until reaching to an equilibrium moisture content (db). The moisture reduction data were collected at certain intervals and the moisture content data were converted to moisture ratio (MR). The MR data were used to predict the drying kinetics of horseradish drying using five empirical models. The results indicated that drying kinetics followed the constant drying rate period and falling rate period for all three drying temperatures. The five tested models were able to predict the drying kinetics with R2 (0.96-0.99) and RMSE (0.01-0.06) depending on the models and blanching. However, diffusion approach model was the best fitted model securing the highest R2 and the lowest RMSE. The findings of this research are expected to be significantly important for horseradish drying effectively.


2019 ◽  
Vol 25 (5) ◽  
pp. 414-428 ◽  
Author(s):  
M Ramírez ◽  
MJ Tenorio ◽  
C Ramírez ◽  
A Jaques ◽  
H Nuñez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document