Development of extended-release solid dispersion granules of tacrolimus: evaluation of release mechanism and human oral bioavailability

2017 ◽  
Vol 69 (12) ◽  
pp. 1697-1706 ◽  
Author(s):  
Daisuke Tsunashima ◽  
Kazunari Yamashita ◽  
Ken-ichi Ogawara ◽  
Kazuhiro Sako ◽  
Tadashi Hakomori ◽  
...  
Author(s):  
Bhikshapathi D. V. R. N. ◽  
Srinivas I

Repaglinide is a pharmaceutical drug used for the treatment of type II diabetes mellitus, it is characterized with poor solubility which limits its absorption and dissolution rate and delays onset of action. In the present study, immediate release solid dispersion of repaglinide was formulated by solvent evaporation technique. Repaglinide solid dispersions were prepared using PEG 8000, Pluronic F 127 and Gelucire 44/14 by solvent evaporation method. A 3-factor, 3-level central composite design employed to study the effect of each independent variable on dependent variables. FTIR studies revealed that no drug excipient interaction takes place. From powder X-ray diffraction (p-XRD) and by scanning electron microscopy (SEM) studies it was evident that polymorphic form of repaglinide has been converted into an amorphous form from crystalline within the solid dispersion formulation. The correlation coefficient showed that the release profile followed Higuchi model anomalous behavior and hence release mechanism was indicative of diffusion. The obtained results suggested that developed solid dispersion by solvent evaporation method might be an efficacious approach for enhancing the solubility and dissolution rate of repaglinide.


2021 ◽  
Vol 14 (2) ◽  
pp. 132
Author(s):  
Siriporn Okonogi ◽  
Adchareeya Kaewpinta ◽  
Sakornrat Khongkhunthian ◽  
Pisaisit Chaijareenont

Burst release of carbamide peroxide (CP) from traditional hydrogels causes severe inflammation to periodontal tissues. The present study explores the development of a novel CP nanoemulgel (CP-NG), an oil-in-water nanoemulsion-based gel in which CP was loaded with a view to controlling CP release. CP solid dispersions were prepared, using white soft paraffin or polyvinylpyrrolidone-white soft paraffin mixture as a carrier, prior to formulating nanoemulsions. It was found that carrier type and the ratio of CP to carrier affected drug crystallinity. Nanoemulsions formulated from the optimized CP solid dispersions were used to prepare CP-NG. It was found that the ratio of drug to carrier in CP solid dispersions affected the particle size and zeta potential of the nanoemulsions as well as drug release behavior and tooth bleaching efficacy of CP-NG. Drug release from CP-NG followed a first-order kinetic reaction and the release mechanism was an anomalous transport. Drug release rate decreased with an increase in solid dispersion carriers. CP-NG obtained from the solid dispersion with a 1:1 ratio of CP to the polymer mixture is suitable for sustaining drug release with high tooth bleaching efficacy and without reduction of enamel microhardness. The developed CP-NG is a promising potential tooth bleaching formulation.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 90
Author(s):  
Eun-Sol Ha ◽  
Du Hyung Choi ◽  
In-hwan Baek ◽  
Heejun Park ◽  
Min-Soo Kim

In this study, we designed amorphous solid dispersions based on Eudragit E/HCl (neutralized Eudragit E using hydrochloric acid) to maximize the dissolution of trans-resveratrol. Solid-state characterization of amorphous solid dispersions of trans-resveratrol was performed using powder X-ray diffraction, scanning electron microscopy, and particle size measurements. In addition, an in vitro dissolution study and an in vivo pharmacokinetic study in rats were carried out. Among the tested polymers, Eudragit E/HCl was the most effective solid dispersion for the solubilization of trans-resveratrol. Eudragit E/HCl significantly inhibited the precipitation of trans-resveratrol in a pH 1.2 dissolution medium in a dose-dependent manner. The amorphous Eudragit E/HCl solid dispersion at a trans-resveratrol/polymer ratio of 10/90 exhibited a high degree of supersaturation without trans-resveratrol precipitation for at least 48 h by the formation of Eudragit E/HCl micelles. In rats, the absolute oral bioavailability (F%) of trans-resveratrol from Eudragit E/HCl solid dispersion (10/90) was estimated to be 40%. Therefore, trans-resveratrol-loaded Eudragit E/HCl solid dispersions prepared by spray drying offer a promising formulation strategy with high oral bioavailability for developing high-quality health supplements, nutraceutical, and pharmaceutical products.


2017 ◽  
Vol 107 ◽  
pp. 54-61 ◽  
Author(s):  
Shamandeep Kaur ◽  
Sunil K. Jena ◽  
Sanjaya K. Samal ◽  
Vaishali Saini ◽  
Abhay T. Sangamwar

INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (10) ◽  
pp. 25-33
Author(s):  
Satya Lakshmi S. ◽  
Jyothsna P ◽  
Srinivasa Rao Y. ◽  
Naga Mallikarjun P. ◽  

Cyclodextrin has been recognized as a linker molecule that can link with the various drug substances to produce a nano-porous structure called nanosponges (NS) and increase the dissolution rate of poorly soluble drug substances. This work aimed to load rosuvastatin calcium (RSC) with solubility enhancer’s β-cyclodextrin (β-CD) or polyvinyl alcohol (PVA). β-CD based RSC-NS were fabricated by the emulsion solvent diffusion technique; with solubilizer dichloromethane and different ratios of ethyl cellulose as a co-polymer. Characterization of the prepared nanosponges was done by various testing procedures that confirm its nanosize and particle size and drug release. RSC loading in NS was assessed by DSC, FTIR and SEM. Among all the formulations F5 has 78.23 % entrapment efficiency. 2-3 folds of increased solubility were obtained with RSC-NS. F1-F6 formulations released 76.35 % - 98.69 % of the drug at the end of 30 min. In the preparation of extended-release tablets, NS prepared from F5 formulation was used and the best tablet formulation was selected based on various evaluation tests. All the formulations except S3, S8 followed first-order release kinetics. S1 & S2 drug release mechanism is Higuchi while other formulations are Korsemeyer-Peppas, so the release mechanism for most of the formulations is erosion than diffusion.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 328 ◽  
Author(s):  
Zhuang Ding ◽  
Lili Wang ◽  
Yangyang Xing ◽  
Yanna Zhao ◽  
Zhengping Wang ◽  
...  

Celecoxib (CLX), a selective COX-2 inhibitor, is a biopharmaceutics classification system (BCS) class II drug with its bioavailability being limited by thepoor aqueoussolubility. The purpose of this study was to develop and optimize CLX nanocrystalline(CLX-NC) solid dispersion prepared by the wet medium millingtechnique combined with lyophilizationto enhance oral bioavailability. In formulation screening, the resulting CLX-NC usingpolyvinylpyrrolidone (PVP) VA64 and sodiumdodecyl sulfate (SDS) as combined stabilizers showed the minimum particle size and a satisfactory stability. The formulation and preparation processwere further optimized by central composite experimentaldesign with PVP VA64 concentration (X1), SDS concentration (X2) and milling times (X3) as independent factors and particle size (Y1), polydispersity index (PDI, Y2) and zeta potential (Y3) as response variables. The optimal condition was determined as a combination of 0.75% PVP VA64, 0.11% SDS with milling for 90 min.The particle size, PDI and zeta potential of optimized CLX-NC were found to be 152.4 ± 1.4 nm, 0.191 ± 0.012 and −34.4 ± 0.6 mV, respectively. The optimized formulation showed homogeneous rod-like morphology as observed by scanning electron microscopy and was in a crystalline state as determined by differential scanning calorimetry and powder X-ray diffraction. In a storage stability study, optimized CLX-NC exhibited an excellent physical stability during six months’ storage at both the refrigeration and room conditions. In vivo pharmacokinetic research in Sprague-Dawley ratsdisplayed that Cmax and AUC0–∞ of CLX-NC were increased by 2.9 and 3.1 fold, compared with physical mixture. In this study, the screening and optimizing strategy of CLX-NC formulation represents a commercially viable approach forenhancing the oral bioavailability of CLX.


Sign in / Sign up

Export Citation Format

Share Document