scholarly journals Pharmaceutical evaluation of matrix tablets prepared using a fused deposition modelling type three‐dimensional printer – Effect of geometrical internal microstructural factors on drug release from enteric‐polymer tablets containing rebamipide

2020 ◽  
Vol 72 (6) ◽  
pp. 787-797
Author(s):  
Yusuke Hattori ◽  
Shiho Kubota ◽  
Makoto Otsuka
2021 ◽  
Vol 5 (1) ◽  
pp. 15
Author(s):  
Nuno Venâncio ◽  
Gabriela G. Pereira ◽  
João F. Pinto ◽  
Ana I. Fernandes

Patient-centric therapy is especially important in pediatrics and may be attained by three-dimensional printing. Filaments containing 30% w/w of theophylline were produced by hot-melt extrusion and printed using fused deposition modelling to produce tablets. Here, preliminary results evaluating the effect of infill geometry (cross, star, grid) on drug content and release are reported.


Author(s):  
Varun Sharma ◽  
Khaja Moinuddin Shaik ◽  
Archita Choudhury ◽  
Pramod Kumar ◽  
Prateek Kala ◽  
...  

The present research paper attempts to study the effect of different process parameters on the dissolution rate during 3D printed tablets. Three-dimensional printing has the potential of serving tailored made tablets to cater personalized drug delivery systems. Fluorescein loaded PVA filaments through impregnation route was used to fabricate tablets based on Taguchi based design of experimentation using Fused Deposition Modelling (FDM). The effect of print speed, infill percentage and layer thickness were analyzed to study the effect on rate of dissolution. Infill percentage followed by print speed were found to be critical parameters affecting dissolution rate. The data analysis provided an insight into the study of interaction among different 3D printing parameters to develop an empirical relation for percentage release of the drug in human body.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wiktoria Maria Wojnarowska ◽  
Jakub Najowicz ◽  
Tomasz Piecuch ◽  
Michał Sochacki ◽  
Dawid Pijanka ◽  
...  

Purpose Chicken orthoses that cover the ankle joint area are not commercially available. Therefore, the main purpose of this study is to fabricate a customised temporary Ankle–Foot Orthosis (AFO) for a chicken with a twisted ankle using computer-aided design (CAD) and three-dimensional (3D) printing. The secondary objective of the paper is to present the specific application of Additive Manufacturing (AM) in veterinary medicine. Design/methodology/approach The design process was based on multiple sketches, photos and measurements that were provided by the owner of the animal. The 3D model of the orthosis was made with Autodesk Fusion 360, while the prototype was fabricated using fused deposition modelling (FDM). Evaluation of the AFO was performed using the finite element method. Findings The work resulted in a functional 3D printed AFO for chicken. It was found that the orthosis made with AM provides satisfactory stiffen and a good fit. It was concluded that AM is suitable for custom bird AFO fabrication and, in some respects, is superior to traditional manufacturing methods. It was also concluded that the presented procedure can be applied in other veterinary cases and to other animal species and other parts of their body. AM provides veterinary with a powerful tool for the production of well-fitted and durable orthoses for animals. Research limitations/implications The study does not include the chicken's opinion on the comfort or fit of the manufactured AFO due to communication issues. Evaluation of the final prototype was done by the researchers and the animal owner. Originality/value No evidence was found in the literature on the use of AM for chicken orthosis, so this study is the first to describe such an application of AM. In addition, the study demonstrates the value of AM in veterinary medicine, especially in the production of devices such as orthoses.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 295 ◽  
Author(s):  
Wojciech Wałach ◽  
Natalia Oleszko-Torbus ◽  
Alicja Utrata-Wesołek ◽  
Marcelina Bochenek ◽  
Ewa Kijeńska-Gawrońska ◽  
...  

Poly(2-oxazoline) (POx) matrices in the form of non-woven fibrous mats and three-dimensional moulds were obtained by electrospinning and fused deposition modelling (FDM), respectively. To obtain these materials, poly(2-isopropyl-2-oxazoline) (PiPrOx) and gradient copolymers of 2-isopropyl- with 2-n-propyl-2-oxazoline (P(iPrOx-nPrOx)), with relatively low molar masses and low dispersity values, were processed. The conditions for the electrospinning of POx were optimised for both water and the organic solvent. Also, the FDM conditions for the fabrication of POx multi-layer moulds of cylindrical or cubical shape were optimised. The properties of the POx after electrospinning and extrusion from melt were determined. The molar mass of all (co)poly(2-oxazoline)s did not change after electrospinning. Also, FDM did not influence the molar masses of the (co)polymers; however, the long processing of the material caused degradation and an increase in molar mass dispersity. The thermal properties changed significantly after processing of POx what was monitored by increase in enthalpy of exo- and endothermic peaks in differential scanning calorimetry (DSC) curve. The influence of the processing conditions on the structure and properties of the final material were evaluated having in a mind their potential application as scaffolds.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1524
Author(s):  
Sadikalmahdi Abdella ◽  
Souha H. Youssef ◽  
Franklin Afinjuomo ◽  
Yunmei Song ◽  
Paris Fouladian ◽  
...  

Three-dimensional (3D) printing is among the rapidly evolving technologies with applications in many sectors. The pharmaceutical industry is no exception, and the approval of the first 3D-printed tablet (Spiratam®) marked a revolution in the field. Several studies reported the fabrication of different dosage forms using a range of 3D printing techniques. Thermosensitive drugs compose a considerable segment of available medications in the market requiring strict temperature control during processing to ensure their efficacy and safety. Heating involved in some of the 3D printing technologies raises concerns regarding the feasibility of the techniques for printing thermolabile drugs. Studies reported that semi-solid extrusion (SSE) is the commonly used printing technique to fabricate thermosensitive drugs. Digital light processing (DLP), binder jetting (BJ), and stereolithography (SLA) can also be used for the fabrication of thermosensitive drugs as they do not involve heating elements. Nonetheless, degradation of some drugs by light source used in the techniques was reported. Interestingly, fused deposition modelling (FDM) coupled with filling techniques offered protection against thermal degradation. Concepts such as selection of low melting point polymers, adjustment of printing parameters, and coupling of more than one printing technique were exploited in printing thermosensitive drugs. This systematic review presents challenges, 3DP procedures, and future directions of 3D printing of thermo-sensitive formulations.


2009 ◽  
Vol 83-86 ◽  
pp. 269-274 ◽  
Author(s):  
Syed H. Masood ◽  
Kadhim Alamara

In tissue engineering (TE), a porous scaffold structure of biodegradable material is required as a template to guide the proliferation, growth and development of cells appropriately in three dimensions. The scaffold must meet design requirements of appropriate porosity, pore size and interconnected structure to allow cell proliferation and adhesion. This paper presents a methodology for design and manufacture of TE scaffolds with varying porosity by employing open structure building units and Fused Deposition Modeling (FDM) rapid prototyping technique. A computer modeling approach for constructing and assembly of three-dimensional unit cell structure is presented to provide a solution of scaffolds design that can potentially meet the diverse requirements of TE applications. A parametric set of open polyhedral unit cells is used to assist the user in designing the required micro-architecture of the scaffold with required porosity and pore size and then the Boolean operation is used to create the scaffold of a given CAD model from the designed microstructure. The procedure is verified by fabrication of physical scaffolds using the commercial FDM system.


2010 ◽  
Vol 441 ◽  
pp. 155-179 ◽  
Author(s):  
Ulrike Deisinger

For tissue regeneration in medicine three-dimensional scaffolds with specific characteristics are required. A very important property is a high, interconnecting porosity to enable tissue ingrowth into the scaffold. Pore size distribution and pore geometry should be adapted to the respective tissue. Additionally, the scaffolds should have a basic stability for handling during implantation, which is provided by ceramic scaffolds. Various methods to produce such ceramic 3D scaffolds exist. In this paper conventional and new fabrication techniques are reviewed. Conventional methods cover the replica of synthetic and natural templates, the use of sacrificial templates and direct foaming. Rapid prototyping techniques are the new methods listed in this work. They include fused deposition modelling, robocasting and dispense-plotting, ink jet printing, stereolithography, 3D-printing, selective laser sintering/melting and a negative mould technique also involving rapid prototyping. The various fabrication methods are described and the characteristics of the resulting scaffolds are pointed out. Finally, the techniques are compared to find out their disadvantages and advantages.


2020 ◽  
Author(s):  
Michael Yue-Cheng Chen ◽  
Jacob Skewes ◽  
Ryan Daley ◽  
Maria Ann Woodruff ◽  
Nicholas John Rukin

Abstract BackgroundThree-dimensional (3D) printing is a promising technology but the limitations are often poorly understood. We compare different 3D printingmethods with conventional machining techniques in manufacturing meatal urethral dilators which were recently removed from the Australian market. MethodsA prototype dilator was 3D printed vertically orientated on a low cost fused deposition modelling (FDM) 3D printer in polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS). It was also 3D printed horizontally orientated in ABS on a high-end FDM 3D printer with soluble support material, as well as on a SLS 3D printer in medical nylon. The dilator was also machined in stainless steel using a lathe. All dilators were tested mechanically in a custom rig by hanging calibrated weights from the handle until the dilator snapped. ResultsThe horizontally printed ABS dilator experienced failure at a greater load than the vertically printed PLA and ABS dilators respectively (503g vs 283g vs 163g, p < 0.001). The SLS nylon dilator and machined steel dilator did not fail. The steel dilator is most expensive with a quantity of five at 98 USD each, but this decreases to 30 USD each for a quantity of 1000. In contrast, the cost for the SLS dilator is 33 USD each for five and 27 USD each for 1000. ConclusionsAt the current time 3D printing is not a replacement for conventional manufacturing. 3D printing is best used for patient-specific parts, prototyping or manufacturing complex parts that have additional functionality that cannot otherwise beachieved.


Sign in / Sign up

Export Citation Format

Share Document