scholarly journals Xanthomonas transcriptome inside cauliflower hydathodes reveals bacterial virulence strategies and physiological adaptations at early infection stages

2021 ◽  
Author(s):  
Julien S. Luneau ◽  
Aude Cerutti ◽  
Brice Roux ◽  
Sébastien Carrère ◽  
Marie‐Françoise Jardinaud ◽  
...  
2019 ◽  
pp. 11-20
Author(s):  
Mihai-Alexandru Citea ◽  
Marius Neculaes

High performance sport has a major impact on the physiological adaptations of the respiratory system. The importance of the optimal functioning of this system is essential to achieve top results in high performance sport but also in maintaining a long term health status. Science journals present numerous studies that highlight the benefits of practicing Tai Chi on the general population, with effects ranging from improving cardiac function, to influencing the immune system. The purpose of this study is to identify whether by practicing Tai Chi forms a athlete can change their breathing pattern and develop their respiratory amplitude. The subjects of the study were 22 fencing practitioners, accredited at the Iași Municipal Sports Club (C.S.M. Iași), aged between 14 and 18 years, with over 3 years of competitive activity. Materials and method: The study participants were evaluated initially and at the end of 7 months of practice. The frequency was 3 sessions per week, and the duration of each session was 20-30 minutes. The evaluation consisted in measuring the circumference of the thorax at 3 different levels: subaxillary, medial thorax (T6-T7) and lower rib (diaphragmatic) in maximal inspiration and expiration. Conclusions: A constant evolution is observed in most of the exposed cases. In cases where this evolution is not visible, a change in the breathing mode can be noticed, transforming from an upper rib breathing into a thoracic or abdominal breathing. With the exception of one case, all subjects had an improvement of the value in the lower rib level.


Author(s):  
Kaat Schroven ◽  
Abram Aertsen ◽  
Rob Lavigne

ABSTRACT Bacteria-infecting viruses (phages) and their hosts maintain an ancient and complex relationship. Bacterial predation by lytic phages drives an ongoing phage-host arms race, whereas temperate phages initiate mutualistic relationships with their hosts upon lysogenization as prophages. In human pathogens, these prophages impact bacterial virulence in distinct ways: by secretion of phage-encoded toxins, modulation of the bacterial envelope, mediation of bacterial infectivity and the control of bacterial cell regulation. This review builds the argument that virulence-influencing prophages hold extensive, unexplored potential for biotechnology. More specifically, it highlights the development potential of novel therapies against infectious diseases, to address the current antibiotic resistance crisis. First, designer bacteriophages may serve to deliver genes encoding cargo proteins which repress bacterial virulence. Secondly, one may develop small molecules mimicking phage-derived proteins targeting central regulators of bacterial virulence. Thirdly, bacteria equipped with phage-derived synthetic circuits which modulate key virulence factors could serve as vaccine candidates to prevent bacterial infections. The development and exploitation of such antibacterial strategies will depend on the discovery of other prophage-derived, virulence control mechanisms and, more generally, on the dissection of the mutualistic relationship between temperate phages and bacteria, as well as on continuing developments in the synthetic biology field.


Sign in / Sign up

Export Citation Format

Share Document