scholarly journals Bacteriophages as drivers of bacterial virulence and their potential for biotechnological exploitation

Author(s):  
Kaat Schroven ◽  
Abram Aertsen ◽  
Rob Lavigne

ABSTRACT Bacteria-infecting viruses (phages) and their hosts maintain an ancient and complex relationship. Bacterial predation by lytic phages drives an ongoing phage-host arms race, whereas temperate phages initiate mutualistic relationships with their hosts upon lysogenization as prophages. In human pathogens, these prophages impact bacterial virulence in distinct ways: by secretion of phage-encoded toxins, modulation of the bacterial envelope, mediation of bacterial infectivity and the control of bacterial cell regulation. This review builds the argument that virulence-influencing prophages hold extensive, unexplored potential for biotechnology. More specifically, it highlights the development potential of novel therapies against infectious diseases, to address the current antibiotic resistance crisis. First, designer bacteriophages may serve to deliver genes encoding cargo proteins which repress bacterial virulence. Secondly, one may develop small molecules mimicking phage-derived proteins targeting central regulators of bacterial virulence. Thirdly, bacteria equipped with phage-derived synthetic circuits which modulate key virulence factors could serve as vaccine candidates to prevent bacterial infections. The development and exploitation of such antibacterial strategies will depend on the discovery of other prophage-derived, virulence control mechanisms and, more generally, on the dissection of the mutualistic relationship between temperate phages and bacteria, as well as on continuing developments in the synthetic biology field.

Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 892
Author(s):  
Wieslaw Swietnicki

Bacterial secretory systems are essential for virulence in human pathogens. The systems have become a target of alternative antibacterial strategies based on small molecules and antibodies. Strategies to use components of the systems to design prophylactics have been less publicized despite vaccines being the preferred solution to dealing with bacterial infections. In the current review, strategies to design vaccines against selected pathogens are presented and connected to the biology of the system. The examples are given for Y. pestis, S. enterica, B. anthracis, S. flexneri, and other human pathogens, and discussed in terms of effectiveness and long-term protection.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3779
Author(s):  
Ruben Soto-Acosta ◽  
Eunkyung Jung ◽  
Li Qiu ◽  
Daniel J. Wilson ◽  
Robert J. Geraghty ◽  
...  

Discovery of compound 1 as a Zika virus (ZIKV) inhibitor has prompted us to investigate its 7H-pyrrolo[2,3-d]pyrimidine scaffold, revealing structural features that elicit antiviral activity. Furthermore, we have demonstrated that 9H-purine or 1H-pyrazolo[3,4-d]pyrimidine can serve as an alternative core structure. Overall, we have identified 4,7-disubstituted 7H-pyrrolo[2,3-d]pyrimidines and their analogs including compounds 1, 8 and 11 as promising antiviral agents against flaviviruses ZIKV and dengue virus (DENV). While the molecular target of these compounds is yet to be elucidated, 4,7-disubstituted 7H-pyrrolo[2,3-d]pyrimidines and their analogs are new chemotypes in the design of small molecules against flaviviruses, an important group of human pathogens.


2005 ◽  
Vol 49 (7) ◽  
pp. 2625-2633 ◽  
Author(s):  
Henry Fraimow ◽  
Christopher Knob ◽  
Inmaculada A. Herrero ◽  
Robin Patel

ABSTRACT Paenibacillus popilliae contains vanF encoding a putative d-Ala:d-lactate (d-Lac) ligase, VanF, as part of the vanY F Z F H F FX F cluster that is similar in structure to the enterococcal vanA and vanB clusters. Using growth curves, we demonstrated that vancomycin resistance in P. popilliae is inducible. Using degenerate oligonucleotides targeted at bacterial cell wall ligases, we identified a second ligase gene with features of a d-Ala:d-Ala ligase in both P. popilliae and the related, vancomycin-susceptible, Paenibacillus lentimorbus. The 3,380-bp region upstream of vanY F Z F H F FX F in P. popilliae ATCC 14706 was sequenced and found to contain genes encoding a putative two-component regulator, VanRFSF, similar to VanRS but more closely related to a family of two-component regulators linked to VanY-like carboxypeptidases in several glycopeptide-susceptible Bacillus species. This upstream region also included a transposase similar to a transposase found in Bacillus halodurans and, in some strains, a 99-bp insertion of unknown function with 95% nucleotide identity to a portion of the Tn1546 transposase gene. Analysis of glycopeptide resistance-associated clusters from soil and/or insect-dwelling organisms may provide important clues to the molecular evolution of acquired glycopeptide resistance elements in human pathogens.


2020 ◽  
Vol 202 (18) ◽  
Author(s):  
Ewa Bukowska-Faniband ◽  
Tilde Andersson ◽  
Rolf Lood

ABSTRACT Bdellovibrio bacteriovorus is an obligate predatory bacterium that invades and kills a broad range of Gram-negative prey cells, including human pathogens. Its potential therapeutic application has been the subject of increased research interest in recent years. However, an improved understanding of the fundamental molecular aspects of the predatory life cycle is crucial for developing this bacterium as a “living antibiotic.” During intracellular growth, B. bacteriovorus secretes an arsenal of hydrolases, which digest the content of the host cell to provide growth nutrients for the predator, e.g., prey DNA is completely degraded by the nucleases. Here, we have, on a genetic and molecular level, characterized two secreted DNases from B. bacteriovorus, Bd0934 and Bd3507, and determined the temporal expression profile of other putative secreted nucleases. We conclude that Bd0934 and Bd3507 are likely a part of the predatosome but are not essential for the predation, host-independent growth, prey biofilm degradation, and self-biofilm formation. The detailed temporal expression analysis of genes encoding secreted nucleases revealed that these enzymes are produced in a sequential orchestrated manner. This work contributes to our understanding of the sequential breakdown of the prey nucleic acid by the nucleases secreted during the predatory life cycle of B. bacteriovorus. IMPORTANCE Antibiotic resistance is a major global concern with few available new means to combat it. From a therapeutic perspective, predatory bacteria constitute an interesting tool. They not only eliminate the pathogen but also reduce the overall pool of antibiotic resistance genes through secretion of nucleases and complete degradation of exogenous DNA. Molecular knowledge of how these secreted DNases act will give us further insight into how antibiotic resistance, and the spread thereof, can be limited through the action of predatory bacteria.


1996 ◽  
Vol 318 (3) ◽  
pp. 813-819 ◽  
Author(s):  
Manuel SOTO ◽  
Jose M REQUENA ◽  
Luis QUIJADA ◽  
Carlos ALONSO

The genomic organization and transcription of the genes encoding the histone H3 of the protozoan parasite Leishmania infantum have been studied. It was found that there are multiple copies of the histone H3 genes distributed in chromosomal bands XIX and XIV. The nucleotide sequence of two of the L. infantum H3 genes, each one located in a different chromosome, is reported. Although the nucleotide sequence of the coding region of both genes is identical, the sequence of the 3´ untranslated region is highly divergent. It was found also that there exist two different size classes of histone H3 transcripts, each one derived from a different gene, and that they are polyadenylated. The steady-state level of the transcripts dramatically decreases when the parasites enter the stationary phase of growth, suggesting a mode of regulation which is linked to the proliferation status of the cell. Unlike the replication-dependent histones, the L. infantum H3 mRNA levels do not decrease after treatment with DNA synthesis inhibitors. A comparative analysis of the sensitivity of the histone mRNA levels to DNA inhibition in the parasites L. infantum and Trypanosoma cruzi revealed the existence of different control mechanisms in histone expression in these two phylogenetically related protozoan parasites.


2007 ◽  
Vol 30 (9) ◽  
pp. 786-791 ◽  
Author(s):  
L. Baldassarri ◽  
L. Montanaro ◽  
R. Creti ◽  
C. R. Arciola

Antibiotic treatment of infections associated with the use of indwelling medical devices in ageing and/or severely ill patients represents a significant healthcare problem due to the difficulty of treating such infections and to the various collateral effects that may be observed following the often aggressive therapy We summarize some effects of antibiotics on the expression of virulence factors of the microorganisms which cause such infections. These effects, particularly those resulting in a stimulation of bacterial virulence, might be usefully included among the other well-known collateral effects of antibiotic therapy


Gut Pathogens ◽  
2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Humera Javed ◽  
Sidrah Saleem ◽  
Aizza Zafar ◽  
Aamir Ghafoor ◽  
Ahmad Bin Shahzad ◽  
...  

Abstract Background The global emergence of plasmid-mediated colistin resistance (Col-R) conferred by mcr genes in gram-negative rods (GNRs) has jeopardized the last treatment option for multidrug-resistant bacterial infections in humans. This study aimed to assess the emergence of mcr gene-mediated Col-R in GNRs isolated from humans and animals in Pakistan. Methods Animal and clinical specimens collected from various sources were prospectively analysed using standard microbiological procedures. Pathogens were identified using the API 20E and API 20NE systems (bioMerieux). Minimum inhibitory concentration (MIC) against colistin was determined using the MIC detection methods, and multiplex polymerase chain reaction (PCR) was used to amplify the mcr-1 to mcr-5 genes. Results We isolated 126 (88.1%) animal and 17 (11.9%) human Col-R phenotypes, among which there was a significant association (P < 0.01) of Escherichia coli and Proteus mirabilis with animals and of Acinetobacter baumannii with humans. Animal strains exhibited statistically significant (P < 0.05) resistance to co-trimoxazole, chloramphenicol, and moxifloxacin, and the human pathogens exhibited statistically significant (P < 0.05) antibiotic resistance to cephalosporins, carbapenems, and piperacillin-tazobactam. For Col-R strains, MIC50 values were > 6 µg/mL and > 12 µg/mL for human and animal isolates, respectively. mcr genes were detected in 110 (76.9%) bacterial strains, of which 108 (98.2%) were mcr-1 and 2 (1.8%) were mcr-2. Conclusions The detection of a considerable number of mcr-1 and mcr-2 genes in animals is worrisome, as they are now being detected in clinical pathogens. The acquisition of mcr genes by colistin-susceptible bacteria could leave us in a post-antibiotic era.


2006 ◽  
Vol 50 (6) ◽  
pp. 1973-1981 ◽  
Author(s):  
Magdalena Stoczko ◽  
Jean-Marie Frère ◽  
Gian Maria Rossolini ◽  
Jean-Denis Docquier

ABSTRACT The diffusion of metallo-β-lactamases (MBLs) among clinically important human pathogens represents a therapeutic issue of increasing importance. However, the origin of these resistance determinants is largely unknown, although an important number of proteins belonging to the MBL superfamily have been identified in microbial genomes. In this work, we analyzed the distribution and function of genes encoding MBL-like proteins in the class Rhizobiales. Among 12 released complete genomes of members of the class Rhizobiales, a total of 57 open reading frames (ORFs) were found to have the MBL conserved motif and identity scores with MBLs ranging from 8 to 40%. On the basis of the best identity scores with known MBLs, four ORFs were cloned into Escherichia coli for heterologous expression. Among their products, one (blr6230) encoded by the Bradyrhizobium japonicum USDA110 genome, named BJP-1, hydrolyzed β-lactams when expressed in E. coli. BJP-1 enzyme is most closely related to the CAU-1 enzyme from Caulobacter vibrioides (40% amino acid sequence identity), a member of subclass B3 MBLs. A kinetic analysis revealed that BJP-1 efficiently hydrolyzed most β-lactam substrates, except aztreonam, ticarcillin, and temocillin, with the highest catalytic efficiency measured with meropenem. Compared to other MBLs, BJP-1 was less sensitive to inactivation by chelating agents.


2011 ◽  
Vol 438 (2) ◽  
pp. 245-254 ◽  
Author(s):  
Claire A. Scott ◽  
David P. Kelsell

Cx (connexin) proteins are components of gap junctions which are aqueous pores that allow intercellular exchange of ions and small molecules. Mutations in Cx genes are linked to a range of human disorders. In the present review we discuss mutations in β-Cx genes encoding Cx26, Cx30, Cx30.3 and Cx31 which lead to skin disease and deafness. Functional studies with Cx proteins have given insights into disease-associated mechanisms and non-gap junctional roles for Cx proteins.


2011 ◽  
Vol 55 (5) ◽  
pp. 2362-2368 ◽  
Author(s):  
Katy L. Blake ◽  
Chris P. Randall ◽  
Alex J. O'Neill

ABSTRACTLantibiotics such as nisin (NIS) are peptide antibiotics that may have a role in the chemotherapy of bacterial infections. A perceived benefit of lantibiotics for clinical use is their low propensity to select resistance, although detailed resistance studies with relevant bacterial pathogens are lacking. Here we examined the development of resistance to NIS inStaphylococcus aureus, establishing that mutants, including small-colony variants, exhibiting substantial (4- to 32-fold) reductions in NIS susceptibility could be selected readily. Comparative genome sequencing of a single NISrmutant exhibiting a 32-fold increase in NIS MIC revealed the presence of only two mutations, leading to the substitutions V229G in the purine operon repressor, PurR, and A208E in an uncharacterized protein encoded by SAOUHSC_02955. Independently selected NISrmutants also harbored mutations in the genes encoding these products. Reintroduction of these mutations into theS. aureuschromosome alone and in combination revealed that SAOUHSC_02955(A208E) made the primary contribution to the resistance phenotype, conferring up to a 16-fold decrease in NIS susceptibility. Bioinformatic analyses suggested that this gene encodes a sensor histidine kinase, leading us to designate it “nisin susceptibility-associated sensor (nsaS).” Doubling-time determinations and mixed-culture competition assays between NISrand NISsstrains indicated that NIS resistance had little impact on bacterial fitness, and resistance was stable in the absence of selection. The apparent ease with whichS. aureuscan develop and maintain NIS resistancein vitrosuggests that resistance to NIS and other lantibiotics with similar modes of action would arise in the clinic if these agents are employed as chemotherapeutic drugs.


Sign in / Sign up

Export Citation Format

Share Document