scholarly journals Rice OsDOF15 contributes to ethylene‐inhibited primary root elongation under salt stress

2019 ◽  
Vol 223 (2) ◽  
pp. 798-813 ◽  
Author(s):  
Hua Qin ◽  
Juan Wang ◽  
Xinbing Chen ◽  
Fangfang Wang ◽  
Peng Peng ◽  
...  
2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Yueqing Hu ◽  
Shitou Xia ◽  
Yi Su ◽  
Huiqun Wang ◽  
Weigui Luo ◽  
...  

Brassinosteroids (BRs) are steroidal phytohormones that regulate various physiological processes, such as root development and stress tolerance. In the present study, we showed that brassinolide (BL) affects potato rootin vitrogrowth in a dose-dependent manner. Low BL concentrations (0.1 and 0.01 μg/L) promoted root elongation and lateral root development, whereas high BL concentrations (1–100 μg/L) inhibited root elongation. There was a significant (P<0.05) positive correlation between root activity and BL concentrations within a range from 0.01 to 100 μg/L, with the peak activity of 8.238 mg TTC·g−1FW·h−1at a BL concentration of 100 μg/L. Furthermore, plants treated with 50 μg/L BL showed enhanced salt stress tolerance throughin vitrogrowth. Under this scenario, BL treatment enhanced the proline content and antioxidant enzymes’ (superoxide dismutase, peroxidase, and catalase) activity and reduced malondialdehyde content in potato shoots. Application of BL maintain K+and Na+homeostasis by improving tissue K+/Na+ratio. Therefore, we suggested that the effects of BL on root development from stem fragments explants as well as on primary root development are dose-dependent and that BL application alleviates salt stress on potato by improving root activity, root/shoot ratio, and antioxidative capacity in shoots and maintaining K+/Na+homeostasis in potato shoots and roots.


2019 ◽  
Vol 18 (5) ◽  
pp. 27-38 ◽  
Author(s):  
Amal Bouallègue ◽  
Fatma Souissi ◽  
Issam Nouairi ◽  
Monia Souibgui ◽  
Zouhaier Abbes ◽  
...  

Seed priming is one of the potential physiological approaches to enhance seed germination under salt stress. The present study examined the role of two seed priming molecules, salicylic acid (SA) and hydrogen peroxide (H2O2), to enhance the salt tolerance in lentil seeds at germination stage. Salt stress caused significant decrease in germination percentage and primary root elongation. This decrease was associated with significant increase in lipid peroxidation and total lipid (TL) contents in embryonic axis. The catalase (CAT), guaiacol peroxydase (GPOX) and superoxide dismutase (SOD) activities remained unchanged or decreased significantly under the influence of salt stress, in both embryonic axis and cotyledons. Starch mobilization was not affected by salt stress. The two priming treatments effectively alleviated the negative effects of salt stress. SA and H2O2 applications after dose optimization resulted in significant enhancement of germination percentage and primary root elongation. No significant changes in starch, soluble sugars contents and SOD activity were detected following SA and H2O2 treatments. Seed priming treatments triggered the activities of GPOX and CAT and caused the reduction of lipid peroxidation especially in embryonic axis. TL content and especially the fatty acid C18:3 increased after SA applications. The better performance under salt stress of primed lentil seeds was associated with lower lipid peroxidation, and activation of enzymatic antioxidative defense system. Obtained results confirm the potential for using SA and H2O2 to improve germination and plant growth under salt stress conditions.


Crop Science ◽  
2011 ◽  
Vol 51 (1) ◽  
pp. 157-172 ◽  
Author(s):  
Kristen A. Leach ◽  
Lindsey G. Hejlek ◽  
Leonard B. Hearne ◽  
Henry T. Nguyen ◽  
Robert E. Sharp ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 249
Author(s):  
Weimiao Liu ◽  
Liai Xu ◽  
Hui Lin ◽  
Jiashu Cao

The growth of plant cells is inseparable from relaxation and expansion of cell walls. Expansins are a class of cell wall binding proteins, which play important roles in the relaxation of cell walls. Although there are many members in expansin gene family, the functions of most expansin genes in plant growth and development are still poorly understood. In this study, the functions of two expansin genes, AtEXPA4 and AtEXPB5 were characterized in Arabidopsis thaliana. AtEXPA4 and AtEXPB5 displayed consistent expression patterns in mature pollen grains and pollen tubes, but AtEXPA4 also showed a high expression level in primary roots. Two single mutants, atexpa4 and atexpb5, showed normal reproductive development, whereas atexpa4atexpb5 double mutant was defective in pollen tube growth. Moreover, AtEXPA4 overexpression enhanced primary root elongation, on the contrary, knocking out AtEXPA4 made the growth of primary root slower. Our results indicated that AtEXPA4 and AtEXPB5 were redundantly involved in pollen tube growth and AtEXPA4 was required for primary root elongation.


2021 ◽  
Vol 16 (4) ◽  
pp. 1879542
Author(s):  
Ernesto Vázquez-Chimalhua ◽  
Salvador Barrera-Ortiz ◽  
Eduardo Valencia-Cantero ◽  
José López-Bucio ◽  
León Francisco Ruiz-Herrera

1996 ◽  
Vol 36 (7) ◽  
pp. 847 ◽  
Author(s):  
A Costantini ◽  
D Doley ◽  
HB So

The influence of penetration resistance (PR), an easily measured indicator of soil strength, on the growth of Pinus caribaea var. hondurensis radicles and seedlings was investigated. Negative exponential relationships between PR and both radicle and primary root elongation were observed. All root elongation ceased at PR levels of 3.25 MPa. Tip diameters of radicles and primary roots were positively correlated with PR values up to 2.4 MPa, whilst numbers of primary roots, total root lengths and lengths of longest roots were all negatively correlated with PR. Hypocotyl elongation was also reduced by increasing PR, although the reductions occurred at higher PRs than those which inhibited root development. In contrast, primary shoot development was unaffected by PR levels which were sufficient to stop root elongation, but was reduced in soil with a PR of 4.8 MPa. There were significant family x soil type and family x PR interactions for radicle, hypocotyl, primary root and primary shoot development. 1f these interactions are correlated with performance in the field, then they may serve as useful indicators of family suitability to both soil type and high strength soils.


Author(s):  
Yang Li ◽  
Heng Ye ◽  
Li Song ◽  
Tri D Vuong ◽  
Qijian Song ◽  
...  

Abstract Aluminum (Al) toxicity inhibits soybean root growth, leading to insufficient water and nutrient uptake. In this research, two soybean lines (Magellan and PI 567731) were identified differing in Al tolerance as determined by primary root length ratio (PRL_Ratio), total root length ratio (TRL_Ratio), and root tip number ratio (RTN_Ratio) under Al stress compared to unstressed controlled conditions. Serious root necrosis was observed in PI 567731, but not in Magellan under Al stress. An F8 recombinant inbred line population derived from a cross between Magellan and PI 567731 was used to map the quantitative trait loci (QTL) for Al-tolerance. Three QTL on chromosomes 3, 13, and 20, with tolerant-alleles from Magellan, were identified. qAl_Gm13 and qAl_Gm20, explained large phenotypic variations (13-27%) and played roles in maintaining root elongation. qAl_Gm03 was involved in maintaining root initiation under Al stress. These results suggested the importance of using the parameters of root elongation and root initiation in Al tolerance studies. In addition, qAl_Gm13 and qAl_Gm20 were confirmed in near-isogenic backgrounds and were identified to epistatically regulate Al tolerance in internal detoxification instead of Al 3+ exclusion. The candidate genes for qAl_Gm13 and qAl_Gm20 were suggested by analyzing a previous RNA-seq study. Phylogenetic and pedigree analysis identified the tolerant alleles of both loci derived from the US ancestor line, A.K.[FC30761], originally from China. Our results provide novel genetic resources for breeding Al-tolerant soybeans and suggest that the internal detoxification contributes to soybean tolerance to excessive soil Al.


2004 ◽  
Vol 129 (2) ◽  
pp. 188-192 ◽  
Author(s):  
N. Bernstein ◽  
A. Meiri ◽  
M. Zilberstaine

In most crop species, growth of the shoot is more sensitive to salt stress than root growth. Avocado [Persea americana Mill.] is very sensitive to NaCl stress. Even low concentrations of salt (15 mm) inhibit tree growth and decrease productivity. Observations in experimental orchards have suggested that root growth in avocado might be more restricted by salinity than shoot growth. In the present study, we evaluated quantitatively the inhibitory effects of salt stress on growth of the avocado root in comparison to the shoot. Seedling plants of the West-Indian rootstock `Degania 117' were grown in complete nutrient solution containing 1, 5, 15, or 25 mm NaCl. The threshold NaCl concentration causing root and shoot growth reduction occurred between 5 and 15 mm. At all concentrations, root growth was much more sensitive to salinity than shoot growth. A concentration of 15 mm NaCl, which did not affect the rate of leaf emergence on the plant and decreased leaf biomass production only 10%, induced a 43% reduction in the rate of root elongation and decreased root volumetric growth rate by 33%. Under 25 mm NaCl, leaf biomass production, leaf initiation rate and leaf elongation rate were reduced 19.5%, 12%, and 5%, respectively, while root volumetric growth and root elongation rate were reduced 65% and 75%, respectively. This strong root growth inhibition is expected to influence the whole plant and therefore root growth under salinity should be considered as an important criterion for rootstocks' tolerance to NaCl.


Sign in / Sign up

Export Citation Format

Share Document