Meta-analysis and transcriptome profiling reveal hub genes for soybean seed storage composition during seed development

Author(s):  
Zhaoming Qi ◽  
Zhanguo Zhang ◽  
Zhongyu Wang ◽  
Jingyao Yu ◽  
Hongtao Qin ◽  
...  
2020 ◽  
Author(s):  
Hengyou Zhang ◽  
Zhenbin Hu ◽  
Yuming Yang ◽  
Xiaoqian Liu ◽  
Haiyan Lv ◽  
...  

Abstract Background: Seeds are the economic basis of oilseed crops, especially for soybean, thus far the most widely cultivated oilseed crop worldwide. Seed development is accompanied with a multitude of diverse cellular processes and revealing the underlying regulatory activities is critical for seed improvement. Results: Here, we profiled transcriptomes of developing seeds (20, 25, 30, 40 days after flowering) representing key points of seed development from early to full development. We identified a set of highly-abundant genes and highlighted the importance of these genes to support nutrient accumulation and transcriptional regulation in developing seeds. We identified 8,925 differentially expressed genes that exhibited temporal expression patterns over the course and had expression specificities in distinct tissues including seeds and non-seed tissues (roots, stems, leaves). Genes with specificities to non-seed tissues have tissue-specialized roles while remain relatively low transcript abundance in developing seeds, exhibiting their supportive roles spatially for seed development. Co-expression network analysis identified several under-explored genes in soybean that bridge tissue-specific gene modules. Conclusions: Our study provides a global view of gene activities and biological processes critical for seed formation in soybean and prioritizes a set of genes for further study. The results shed insight into the mechanism controlling seed development and storage reserves.


Genes ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 408 ◽  
Author(s):  
Jing-Yao Yu ◽  
Zhan-Guo Zhang ◽  
Shi-Yu Huang ◽  
Xue Han ◽  
Xin-Yu Wang ◽  
...  

Soybeans are an important cash crop and are widely used as a source of vegetable protein and edible oil. MicroRNAs (miRNA) are endogenous small RNA that play an important regulatory role in the evolutionarily conserved system of gene expression. In this study, we selected four lines with extreme phenotypes, as well as high or low protein and oil content, from the chromosome segment substitution line (CSSL) constructed from suinong (SN14) and ZYD00006, and planted and sampled at three stages of grain development for small RNA sequencing and expression analysis. The sequencing results revealed the expression pattern of miRNA in the materials, and predicted miRNA-targeted regulatory genes, including 1967 pairs of corresponding relationships between known-miRNA and their target genes, as well as 597 pairs of corresponding relationships between novel-miRNA and their target genes. After screening and annotating genes that were targeted for regulation, five specific genes were identified to be differentially expressed during seed development and subsequently analyzed for their regulatory relationship with miRNAs. The expression pattern of the targeted gene was verified by Real-time Quantitative PCR (RT-qPCR). Our research provides more information about the miRNA regulatory network in soybeans and further identifies useful genes that regulate storage during soy grain development, providing a theoretical basis for the regulation of soybean quality traits.


2017 ◽  
Vol 8 ◽  
Author(s):  
Sehrish Manan ◽  
Muhammad Z. Ahmad ◽  
Gaoyang Zhang ◽  
Beibei Chen ◽  
Basir U. Haq ◽  
...  

2012 ◽  
Vol 34 (4) ◽  
pp. 541-548 ◽  
Author(s):  
Ísis Barreto Dantas ◽  
João Almir de Oliveira ◽  
Heloisa Oliveira dos Santos ◽  
Édila Vilela Resende Von Pinho ◽  
Sttela Dellyzete Veiga Franco da Rosa

Seed quality may be affected by several factors, including permeability, color, and lignin content in the seed coat. This study aimed at evaluating influence of lignin content in the tegument of seed samples of six different soybean cultivars, in which half of each sample was inoculated with the fungus Aspergillus flavus, on the physical and physiological quality, and on the seed health, during 180 days storage period, under cold chamber with controlled conditions of temperature and RH. For that, at each interval of 60 days, samples were removed, and the physiological quality of these seeds was assessed by means of moisture and lignin contents; and by tests of seed health, germination, and electrical conductivity. The moisture content of seeds remained constant during all storage period. In the seed health test, it was found that inoculation was efficient, once the minimum incidence of the fungus in the inoculated seeds was 85%. In the germination test, there was a trend of reduction on percentage germination with the increase in storage period. However, there was an increase on electrical conductivity of seeds assessed. It was concluded that there is no interference of the lignin content in the seed coat on the resistance to infection by the fungus Aspergillus flavus, even after seed storage for a period of 180 days.


Genes ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 719 ◽  
Author(s):  
Mingdong Zhu ◽  
Hongjun Xie ◽  
Xiangjin Wei ◽  
Komivi Dossa ◽  
Yaying Yu ◽  
...  

Rice, being a major staple food crop and sensitive to salinity conditions, bears heavy yield losses due to saline soil. Although some salt responsive genes have been identified in rice, their applications in developing salt tolerant cultivars have resulted in limited achievements. Herein, we used bioinformatic approaches to perform a meta-analysis of three transcriptome datasets from salinity and control conditions in order to reveal novel genes and the molecular pathways underlying rice response to salt. From a total of 28,432 expressed genes, we identify 457 core differentially expressed genes (DEGs) constitutively responding to salt, regardless of the stress duration, genotype, or the tissue. Gene co-expression analysis divided the core DEGs into three different modules, each of them contributing to salt response in a unique metabolic pathway. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses highlighted key biological processes and metabolic pathways involved in the salt response. We identified important novel hub genes encoding proteins of different families including CAM, DUF630/632, DUF581, CHL27, PP2-13, LEA4-5, and transcription factors, which could be functionally characterized using reverse genetic experiments. This novel repertoire of candidate genes related to salt response in rice will be useful for engineering salt tolerant varieties.


2019 ◽  
Vol 20 (16) ◽  
pp. 3930 ◽  
Author(s):  
Komivi Dossa ◽  
Marie A. Mmadi ◽  
Rong Zhou ◽  
Tianyuan Zhang ◽  
Ruqi Su ◽  
...  

Sesame is a source of a healthy vegetable oil, attracting a growing interest worldwide. Abiotic stresses have devastating effects on sesame yield; hence, studies have been performed to understand sesame molecular responses to abiotic stresses, but the core abiotic stress-responsive genes (CARG) that the plant reuses in response to an array of environmental stresses are unknown. We performed a meta-analysis of 72 RNA-Seq datasets from drought, waterlogging, salt and osmotic stresses and identified 543 genes constantly and differentially expressed in response to all stresses, representing the sesame CARG. Weighted gene co-expression network analysis of the CARG revealed three functional modules controlled by key transcription factors. Except for salt stress, the modules were positively correlated with the abiotic stresses. Network topology of the modules showed several hub genes predicted to play prominent functions. As proof of concept, we generated over-expressing Arabidopsis lines with hub and non-hub genes. Transgenic plants performed better under drought, waterlogging, and osmotic stresses than the wild-type plants but did not tolerate the salt treatment. As expected, the hub gene was significantly more potent than the non-hub gene. Overall, we discovered several novel candidate genes, which will fuel investigations on plant responses to multiple abiotic stresses.


Sign in / Sign up

Export Citation Format

Share Document