Impact of IFN‐γ and CD40 signaling on Toxoplasma gondii Cyst Formation in Differentiated Neuro‐2a Neuroblastoma Cells

2021 ◽  
Author(s):  
Claire M. Doherty ◽  
Alicia D. Romero ◽  
Eric Y. Denkers
Author(s):  
Hironori Bando ◽  
Yasuhiro Fukuda ◽  
Nina Watanabe ◽  
Jeje Temitope Olawale ◽  
Kentaro Kato

Toxoplasma gondii chronically infects the brain as latent cysts containing bradyzoites and causes various effects in the host. Recently, the molecular mechanisms of cyst formation in the mouse brain have been elucidated, but those in the human brain remain largely unknown. Here, we show that abnormal glutamine metabolism caused by both interferon-γ (IFN-γ) stimulation and T. gondii infection induce cyst formation in human neuroblastoma cells regardless of the anti-T. gondii host factor nitric oxide (NO) level or Indoleamine 2,3-dioxygenase-1 (IDO1) expression. IFN-γ stimulation promoted intracellular glutamine degradation in human neuronal cells. Additionally, T. gondii infection inhibited the mRNA expression of the host glutamine transporters SLC38A1 and SLC38A2. These dual effects led to glutamine starvation and triggered T. gondii stage conversion in human neuronal cells. Furthermore, these mechanisms are conserved in human iPSC-derived glutamatergic neurons. Taken together, our data suggest that glutamine starvation in host cells is an important trigger of T. gondii stage conversion in human neurons.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Shuai Wang ◽  
Ayah El-Fahmawi ◽  
David A. Christian ◽  
Qun Fang ◽  
Enrico Radaelli ◽  
...  

ABSTRACT Oral infection of C57BL/6J mice with Toxoplasma gondii results in a marked bacterial dysbiosis and the development of severe pathology in the distal small intestine that is dependent on CD4+ T cells and interferon gamma (IFN-γ). This dysbiosis and bacterial translocation contribute to the development of ileal pathology, but the factors that support the bloom of bacterial pathobionts are unclear. The use of microbial community profiling and shotgun metagenomics revealed that Toxoplasma infection induces a dysbiosis dominated by Enterobacteriaceae and an increased potential for nitrate respiration. In vivo experiments using bacterial metabolic mutants revealed that during this infection, host-derived nitrate supports the expansion of Enterobacteriaceae in the ileum via nitrate respiration. Additional experiments with infected mice indicate that the IFN-γ/STAT1/iNOS axis, while essential for parasite control, also supplies a pool of nitrate that serves as a source for anaerobic respiration and supports overgrowth of Enterobacteriaceae. Together, these data reveal a trade-off in intestinal immunity after oral infection of C57BL/6J mice with T. gondii, in which inducible nitric oxide synthase (iNOS) is required for parasite control, while this host enzyme is responsible for specific modification of the composition of the microbiome that contributes to pathology. IMPORTANCE Toxoplasma gondii is a protozoan parasite and a leading cause of foodborne illness. Infection is initiated when the parasite invades the intestinal epithelium, and in many host species, this leads to intense inflammation and a dramatic disruption of the normal microbial ecosystem that resides in the healthy gut (the so-called microbiome). One characteristic change in the microbiome during infection with Toxoplasma—as well as numerous other pathogens—is the overgrowth of Escherichia coli or similar bacteria and a breakdown of commensal containment leading to seeding of peripheral organs with gut bacteria and subsequent sepsis. Our findings provide one clear explanation for how this process is regulated, thereby improving our understanding of the relationship between parasite infection, inflammation, and disease. Furthermore, our results could serve as the basis for the development of novel therapeutics to reduce the potential for harmful bacteria to bloom in the gut during infection.


2020 ◽  
Vol 88 (4) ◽  
Author(s):  
Rachel S. Coombs ◽  
Matthew L. Blank ◽  
Elizabeth D. English ◽  
Yaw Adomako-Ankomah ◽  
Ifeanyi-Chukwu Samuel Urama ◽  
...  

ABSTRACT Rodents are critical for the transmission of Toxoplasma gondii to the definitive feline host via predation, and this relationship has been extensively studied as a model for immune responses to parasites. Neospora caninum is a closely related coccidian parasite of ruminants and canines but is not naturally transmitted by rodents. We compared mouse innate immune responses to N. caninum and T. gondii and found marked differences in cytokine levels and parasite growth kinetics during the first 24 h postinfection (hpi). N. caninum-infected mice produced significantly higher levels of interleukin-12 (IL-12) and interferon gamma (IFN-γ) by as early as 4 hpi, but the level of IFN-γ was significantly lower or undetectable in T. gondii-infected mice during the first 24 hpi. “Immediate” IFN-γ and IL-12p40 production was not detected in MyD88−/− mice. However, unlike IL-12p40−/− and IFN-γ−/− mice, MyD88−/− mice survived N. caninum infections at the dose used in this study. Serial measures of parasite burden showed that MyD88−/− mice were more susceptible to N. caninum infections than wild-type (WT) mice, and control of parasite burdens correlated with a pulse of serum IFN-γ at 3 to 4 days postinfection in the absence of detectable IL-12. Immediate IFN-γ was partially dependent on the T. gondii mouse profilin receptor Toll-like receptor 11 (TLR11), but the ectopic expression of N. caninum profilin in T. gondii had no impact on early IFN-γ production or parasite proliferation. Our data indicate that T. gondii is capable of evading host detection during the first hours after infection, while N. caninum is not, and this is likely due to the early MyD88-dependent recognition of ligands other than profilin.


2019 ◽  
Vol 51 (12) ◽  
pp. 1-10 ◽  
Author(s):  
Miwa Sasai ◽  
Masahiro Yamamoto

AbstractHosts have been fighting pathogens throughout the evolution of all infectious diseases. Toxoplasma gondii is one of the most common infectious agents in humans but causes only opportunistic infection in healthy individuals. Similar to antimicrobial immunity against other organisms, the immune response against T. gondii activates innate immunity and in turn induces acquired immune responses. After activation of acquired immunity, host immune cells robustly produce the proinflammatory cytokine interferon-γ (IFN-γ), which activates a set of IFN-γ-inducible proteins, including GTPases. IFN-inducible GTPases are essential for cell-autonomous immunity and are specialized for effective clearance and growth inhibition of T. gondii by accumulating in parasitophorous vacuole membranes. Recent studies suggest that the cell-autonomous immune response plays a protective role in host defense against not only T. gondii but also various intracellular bacteria. Moreover, the negative regulatory mechanisms of such strong immune responses are also important for host survival after infection. In this review, we will discuss in detail recent advances in the understanding of host defenses against T. gondii and the roles played by cell-autonomous immune responses.


Parasitology ◽  
1997 ◽  
Vol 115 (1) ◽  
pp. 15-20 ◽  
Author(s):  
J. P. DUBEY

The persistence of Toxoplasma gondii tissue cysts in organs of cats (definitive host) and rodents (intermediate hosts) was studied. Nine cats, 12 rats, and 12 mice were fed T. gondii oocysts and their organs were digested in pepsin and then bioassayed for bradyzoites in mice. Of 9 cats killed 37 or 51 days after feeding 102 (2 cats), 103 (3 cats) or 104 (4 cats) oocysts of the VEG strain, tissue cysts were found in each cat; in the tongue of 9, in the heart of 5, in the brain of 4, and in the eyes of 1 cat. The dose had no effect on the distribution of tissue cysts in cats. Twelve rats were each fed 105 oocysts of the VEG strain of T. gondii and killed 21, 29, 64 or 237 days later. At each time-period, 11 tissues of 3 rats were pooled and bioassayed in mice. Tissue cysts were found in the brain, skeletal muscle, heart and kidneys of rats at each killing time; in the lungs, intestines, and mesenteric lymph nodes in 3 of 4 instances; in the tongue, liver, and eyes in 2 instances and in the spleen in 1 instance. Also, using the same procedures and sampling the same 11 tissues as used for rats, tissue cysts were seen in all organs except in the tongue and liver of 3 mice killed on day 82 after feeding the VEG strain. In 9 mice (3 with each strain) fed oocysts of the ME-49, GT-1, or P89 T. gondii strain and killed 62–130 days later, tissue cysts were found consistently only in the brain. Thus, in rats and mice, most tissue cysts were found in the brain and rarely in the tongue. This was in marked contrast to the distribution of tissue cysts in cats.


2000 ◽  
Vol 68 (3) ◽  
pp. 1026-1033 ◽  
Author(s):  
Peter C. Sayles ◽  
George W. Gibson ◽  
Lawrence L. Johnson

ABSTRACT T lymphocytes and gamma interferon (IFN-γ) are known mediators of immune resistance to Toxoplasma gondii infection, but whether B cells also play an important role is not clear. We have investigated this issue using B-cell-deficient (μMT) mice. If vaccinated with attenuated T. gondii tachyzoites, μMT mice are susceptible to a challenge intraperitoneal infection with highly virulent tachyzoites that similarly vaccinated B-cell-sufficient mice resist. Susceptibility is evidenced by increased numbers of parasites at the challenge infection site and by extensive mortality. The susceptibility of B-cell-deficient mice does not appear to be caused by deficient T-cell functions or diminished capacity of vaccinated and challenged B-cell-deficient mice to produce IFN-γ. Administration of Toxoplasma-immune serum, but not nonimmune serum, to vaccinated B-cell-deficient mice significantly prolongs their survival after challenge with virulent tachyzoites. Vaccinated mice lacking Fc receptors or the fifth component of complement resist a challenge infection, suggesting that neither Fc-receptor-dependent phagocytosis of antibody-coated tachyzoites nor antibody-dependent cellular cytotoxicity nor antibody-and-complement-dependent lysis of tachyzoites is a crucial mechanism of resistance. However, Toxoplasma-immune serum effectively inhibits the infection of host cells by tachyzoites in vitro. Together, the results support the hypothesis that B cells are required for vaccination-induced resistance to virulent tachyzoites in order to produce antibodies and that antibodies may function protectively in vivo by blocking infection of host cells by tachyzoites.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Sumit K. Matta ◽  
Kelley Patten ◽  
Quiling Wang ◽  
Bae-Hoon Kim ◽  
John D. MacMicking ◽  
...  

ABSTRACT Phagocytic cells are the first line of innate defense against intracellular pathogens, and yet Toxoplasma gondii is renowned for its ability to survive in macrophages, although this paradigm is based on virulent type I parasites. Surprisingly, we find that avirulent type III parasites are preferentially cleared in naive macrophages, independent of gamma interferon (IFN-γ) activation. The ability of naive macrophages to clear type III parasites was dependent on enhanced activity of NADPH oxidase (Nox)-generated reactive oxygen species (ROS) and induction of guanylate binding protein 5 (Gbp5). Macrophages infected with type III parasites (CTG strain) showed a time-dependent increase in intracellular ROS generation that was higher than that induced by type I parasites (GT1 strain). The absence of Nox1 or Nox2, gp91 subunit isoforms of the Nox complex, reversed ROS-mediated clearance of CTG parasites. Consistent with this finding, both Nox1−/− and Nox2−/− mice showed higher susceptibility to CTG infection than wild-type mice. Additionally, Gbp5 expression was induced upon infection and the enhanced clearance of CTG strain parasites was reversed in Gbp5−/− macrophages. Expression of a type I ROP18 allele in CTG prevented clearance in naive macrophages, suggesting that it plays a role counteracting Gbp5. Although ROS and Gbp5 have been linked to activation of the NLRP3 inflammasome, clearance of CTG parasites did not rely on induction of pyroptosis. Collectively, these findings reveal that not all strains of T. gondii are adept at avoiding clearance in macrophages and define new roles for ROS and Gbps in controlling this important intracellular pathogen. IMPORTANCE Toxoplasma infections in humans and other mammals are largely controlled by IFN-γ produced by the activated adaptive immune system. However, we still do not completely understand the role of cell-intrinsic functions in controlling Toxoplasma or other apicomplexan infections. The present work identifies intrinsic activities in naive macrophages in counteracting T. gondii infection. Using an avirulent strain of T. gondii, we highlight the importance of Nox complexes in conferring protection against parasite infection both in vitro and in vivo. We also identify Gbp5 as a novel macrophage factor involved in limiting intracellular infection by avirulent strains of T. gondii. The rarity of human infections caused by type III strains suggests that these mechanisms may also be important in controlling human toxoplasmosis. These findings further extend our understanding of host responses and defense mechanisms that act to control parasitic infections at the cellular level.


2020 ◽  
Vol 88 (5) ◽  
Author(s):  
Zhaoxia Zhang ◽  
Haorong Gu ◽  
Qi Li ◽  
Jun Zheng ◽  
Shinuo Cao ◽  
...  

ABSTRACT Gamma interferon (IFN-γ)-induced innate immune responses play important roles in the inhibition of Toxoplasma gondii infection. It has been reported that IFN-γ stimulates non-acidification-dependent growth restriction of T. gondii in HeLa cells, but the mechanism remains unclear. Here, we found that γ-aminobutyric acid (GABA) receptor-associated protein-like 2 (GABARAPL2) plays a critical role in parasite restriction in IFN-γ-treated HeLa cells. GABARAPL2 is recruited to membrane structures surrounding parasitophorous vacuoles (PV). Autophagy adaptors are required for the proper localization and function of GABARAPL2 in the IFN-γ -induced immune response. These findings provide further understanding of a noncanonical autophagy pathway responsible for IFN-γ-dependent inhibition of T. gondii growth in human HeLa cells and demonstrate the critical role of GABARAPL2 in this response.


2000 ◽  
Vol 68 (12) ◽  
pp. 6932-6938 ◽  
Author(s):  
Guifang Cai ◽  
Robert Kastelein ◽  
Christopher A. Hunter

ABSTRACT Innate resistance to Toxoplasma gondii is dependent on the ability of interleukin-12 (IL-12) to stimulate natural killer (NK) cell production of gamma interferon (IFN-γ). Since IL-18 is a potent enhancer of IL-12-induced production of IFN-γ by NK cells, SCID mice (which lack an adaptive immune response) were used to assess the role of IL-18 in innate resistance to T. gondii. Administration of anti-IL-18 to SCID mice infected with T. gondii resulted in an early reduction in serum levels of IFN-γ but did not significantly decrease resistance to this infection. In contrast, administration of exogenous IL-18 to infected SCID mice resulted in increased production of IFN-γ, reduced parasite burden, and a delay in time to death. The protective effects of IL-18 treatment correlated with increased NK cell numbers and cytotoxic activity at the local site of administration and with elevated levels of inducible nitrous oxide synthose in the spleens of treated mice. In addition, in vivo depletion studies demonstrated that the ability of exogenous IL-18 to enhance resistance to T. gondii was dependent on IL-12, IFN-γ, and NK cells. Together, these studies demonstrate that although endogenous IL-18 appears to have a limited role in innate resistance to T. gondii, treatment with IL-18 can augment NK cell-mediated immunity to this pathogen.


Sign in / Sign up

Export Citation Format

Share Document