IFN-τActs in a Dose-Dependent Manner on Prostaglandin Production by Buffalo Endometrial Stromal Cells Culturedin vitro

2014 ◽  
Vol 49 (3) ◽  
pp. 403-408 ◽  
Author(s):  
SG Chethan ◽  
SK Singh ◽  
J Nongsiej ◽  
HB Rakesh ◽  
RP Singh ◽  
...  
2008 ◽  
Vol 36 (5) ◽  
pp. 1032-1038 ◽  
Author(s):  
B Kong ◽  
Y Tian ◽  
W Zhu ◽  
S Su ◽  
Y Kan

The effects of cyclooxygenase 2 (COX-2) selective inhibitors on the proliferation of ectopic endometrial stromal cells in vitro were investigated. Ectopic endometrial stromal cells were treated with either celecoxib or nimesulide for 24 and 48 h. The results showed that (i) both celecoxib and nimesulide inhibited the proliferation of ectopic endometrial stromal cells in vitro in a time- and dose-dependent manner; (ii) the expression of prostaglandin E2 was significantly inhibited by both celecoxib and nimesulide in a dose-dependent manner; (iii) the percentage of apoptotic cells was significantly higher for cells treated with celecoxib or nimesulide than for untreated cells; and (iv) the percentage of the cells in the G0/G1 phase increased after the cells were treated with either agent in a dose-dependent manner. These data suggest that celecoxib and nimesulide inhibited proliferation of ectopic endometrial stromal cells by inducing apoptosis and blocking the cell cycle at the G0/G1 phase.


2014 ◽  
Vol 223 (2) ◽  
pp. 203-216 ◽  
Author(s):  
Yoshihiro Joshua Ono ◽  
Yoshito Terai ◽  
Akiko Tanabe ◽  
Atsushi Hayashi ◽  
Masami Hayashi ◽  
...  

Dienogest, a synthetic progestin, has been shown to be effective against endometriosis, although it is still unclear as to how it affects the ectopic endometrial cells. Decorin has been shown to be a powerful endogenous tumor repressor acting in a paracrine fashion to limit tumor growth. Our objectives were to examine the direct effects of progesterone and dienogest on the in vitro proliferation of the human ectopic endometrial epithelial and stromal cell lines, and evaluate as to how decorin contributes to this effect. We also examined DCN mRNA expression in 50 endometriosis patients. The growth of both cell lines was inhibited in a dose-dependent manner by both decorin and dienogest. Using a chromatin immunoprecipitation assay, it was noted that progesterone and dienogest directly induced the binding of the decorin promoter in the EMOsis cc/TERT cells (immortalized human ovarian epithelial cells) and CRL-4003 cells (immortalized human endometrial stromal cells). Progesterone and dienogest also led to significant induced cell cycle arrest via decorin by promoting production of p21 in both cell lines in a dose-dependent manner. Decorin also suppressed the expression of MET in both cell lines. We confirmed that DCN mRNA expression in patients treated with dienogest was higher than that in the control group. In conclusion, decorin induced by dienogest appears to play a crucial role in suppressing endometriosis by exerting anti-proliferative effects and inducing cell cycle arrest via the production of p21 human ectopic endometrial cells and eutopic endometrial stromal cells.


Endocrinology ◽  
2014 ◽  
Vol 155 (5) ◽  
pp. 1921-1930 ◽  
Author(s):  
Tae Hoon Kim ◽  
Yanni Yu ◽  
Lily Luo ◽  
John P. Lydon ◽  
Jae-Wook Jeong ◽  
...  

The pathogenesis of endometriosis remains unclear, and relatively little is known about the mechanisms that promote establishment and survival of the disease. Previously, we demonstrated that v-akt murine thymoma viral oncogene homolog (AKT) activity was increased in endometriosis tissues and cells from ovarian endometriomas and that this increase promoted cell survival as well as decreased levels of progesterone receptor. The objective of this study was to demonstrate a role for AKT in the establishment of ectopic lesions. First, a dose-dependent inhibition of AKT in stromal cells from human ovarian endometriomas (OSIS) as well as endometrial stromal cells from disease-free patients (ESC) with the allosteric AKT inhibitor MK-2206 was demonstrated by decreased levels of phosphorylated (p)(Ser473)-AKT. Levels of the AKT target protein, p(Ser256)-forkhead box O1 were increased in OSIS cells, which decreased with MK-2206 treatment, whereas levels of p(Ser9)-glycogen synthase kinase 3β did not change in response to MK-2206. Although MK-2206 decreased viability of both OSIS and ESC in a dose-dependent manner, proliferation of OSIS cells was differentially decreased significantly compared with ESC. Next, the role of hyperactive AKT in the establishment of ectopic lesions was studied using the bigenic, PRcre/+Ptenf/+ heterozygous mouse. Autologous implantation of uterine tissues was performed in these mice. After 4 weeks, an average of 4 ± 0.33 lesions per Ptenf/+ mouse and 7.5 ± 0.43 lesions in the PRcre/+Ptenf/+ mouse were found. Histological examination of the lesions showed endometrial tissue-like morphology, which was similar in both the Ptenf/+ and PRcre/+Ptenf/+ mice. Treatment of mice with MK-2206 resulted in a significantly decreased number of lesions established. Immunohistochemical staining of ectopic lesions revealed decreased p(Ser473)-AKT and the proliferation marker Ki67 from MK-2206–treated mice compared with vehicle-treated mice. Furthermore, levels of FOXO1 and progesterone receptor increased in lesions of mice receiving MK-2206. These results demonstrate that heightened AKT activity plays an active role in the establishment of ectopic endometrial tissues.


2004 ◽  
Vol 181 (3) ◽  
pp. 477-492 ◽  
Author(s):  
AA Fouladi Nashta ◽  
CV Andreu ◽  
N Nijjar ◽  
JK Heath ◽  
SJ Kimber

Decidualisation of uterine stromal cells is a prerequisite for implantation of the embryo in mice. Here we have used an in vitro culture system in which stromal cells decidualise as indicated by a number of markers, including an increase in alkaline phosphatase (ALP) activity. The latter was used as a quantitative marker of decidualisation in the presence of low (2%) fetal calf serum. Prostaglandin E(2) (PGE(2)), which is known to induce decidualisation, increased ALP activity, and this effect was blocked in a dose-dependent manner by indomethacin. Leukemia inhibitory factor (LIF) was then examined, but it had no effect on PGE(2) secretion. However, LIF suppressed ALP activity in a dose-dependent manner in the presence of 2% serum, while an inhibitor of LIF that competes for binding to its receptor reversed the effect of LIF and increased ALP activity above the control level. In serum-free cultures, stromal cells differentiated rapidly, and no differences were observed between LIF-treated and untreated cultures. Stromal cells produce LIF during in vitro culture, and this peaked at 48 h. Freshly collected stromal cells from both day-2 and -4 pregnant mice expressed mRNA for the LIF receptor, and the transcript level was higher in cells isolated on day 4. However, no differences were observed in the relative levels of transcripts in cells from day 2 and day 4 after culture, nor were there differences between the LIF-treated cultures and controls. Therefore, in this study, we have shown that LIF suppresses decidualisation of murine uterine stromal cells in the presence of serum, this is not due to the regulation of PGE(2) secretion by stromal cells.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3926-3926 ◽  
Author(s):  
Sarah A Meadows ◽  
Adam Kashishian ◽  
Dave Johnson ◽  
Volker Diehl ◽  
Brian Lannutti

Abstract Abstract 3926 Phosphatidylinositide 3-kinases (PI3Ks) are a family of lipid kinases that are involved in signaling events which control a diverse number of cellular processes. The class I kinases contain 4 isoforms designated p110α, β, δ, γ, and are activated by cell surface receptors. Aberrant regulation of the PI3K signaling pathway is frequently observed in human malignancies including those of hematological origin. CAL-101 is an oral p110δ-specific inhibitor which has shown preclinical and clinical activity in non-Hodgkin lymphoma (NHL) and chronic lymphocytic leukemia (CLL). This compound is a potent p110δ inhibitor (EC50 of 65 nM in a whole-blood assay) with >200-fold selectivity over the other class I PI3K isoforms and no activity against Class II and III PI3K family members or other PI3K-related proteins, including mTOR and DNA-PK. Prior in vitro NHL studies revealed that CAL-101 induces caspase-dependent apoptosis, and inhibits CD40L-, BAFF-, CXCL12- and CXCL13-derived survival signals in cellular models (Lannutti BJ, et al., Blood 2010). To investigate the potential role of p110δ in Hodgkin lymphoma (HL) we screened a number of HL cell lines for p110δ isoform expression and constitutive PI3K pathway activation. We report high levels of p110δ protein and activated Akt in 5 of 5 HL cell lines evaluated (L428, L540, L591, L1236, KM-H2). Inhibition of p110δ with CAL-101 treatment of cell lines resulted in a reduction of Akt phosphorylation and a decrease in cellular viability. Because previous studies have established the importance of signals from the microenvironment for the survival and proliferation of malignant cells as well as for their resistance to standard therapies, we investigated the effect of p110δ inhibition by CAL-101 in HL cell line-stroma cocultures. In this setting, CAL-101 overcame tumor cell growth induced by coculture of HL cells with bone marrow stromal cells. In addition, CAL-101 induced dose-dependent apoptosis of HL cells at 48 hours. Furthermore, stromal cell coculture resulted in increased CCL5, CCL17, and CCL22 levels; productions of these chemokines by HL cells cultured in the presence of stromal cells were reduced by CAL-101 in a dose-dependent manner. These results indicate that specific inhibition of p110δ may disrupt signals between HL cells and their microenvironment, thereby providing the preclinical rationale for clinical evaluation of CAL-101 as a novel therapeutic approach in patients with Hodgkin lymphoma. Disclosures: Meadows: Calistoga Pharmaceuticals: Employment. Kashishian:Calistoga Pharmaceuticals: Employment. Johnson:Calistoga Pharmaceuticals: Employment. Lannutti:Calistoga Pharmaceutical Inc.: Employment.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3169-3169
Author(s):  
Hugh Kikuchi ◽  
Amofa Eunice ◽  
Maeve McEnery ◽  
Farzin Farzaneh ◽  
Stephen A Schey ◽  
...  

Abstract Despite of newly developed and more efficacious therapies, multiple myeloma (MM) remains incurable as most patient will eventually relapse and become refractory. The bone marrow (BM) microenvironment provides niches that are advantageous for drug resistance. Effective therapies against MM should ideally target the various protective BM niches that promote MM cell survival and relapse. In addition to stromal mesenchymal/myofibroblastic cells, osteoclasts play a key supportive role in MM cell viability. Additionally, 80% of patients develop osteolytic lesions, which is a major cause of morbidity. Increased osteoclast activity is characteristic in these patients and targeting osteoclast function is desirable to improve therapies against MM. Osteoclasts need to form an F-actin containing ring along the cell margin that defines a resorbing compartment where protons and degradative enzymes are secreted for dissolution of bone mineral. Remodelling of F-actin and vesicle secretion are regulated by the class IA PI3K pathway during osteoclastic bone resorption. Additionally, it has recently been shown that inhibition of the class IA PI3K pathway in MM cells with GDC0941 induces apoptosis-mediated killing. We hypothesised that GDC0941 could be used as a therapeutic agent to overcome MM-induced osteoclast activation. GDC0941 inhibited maturation of osteoclasts derived from BM aspirates from MM patients in a dose dependent manner. This correlated with decreased bone resorption of osteoclasts cultured on dentine discs. Exposure of mature osteoclasts to GC0941 resulted in abnormal organisation of larger F-actin rings, suggesting a negative effect on the dynamics of the actin cytoskeleton required for bone resorption. We also found that GDC-0941 can prevent protection of the MM cell lines MM1.S and MM1.R by osteoclasts against killing. GDC-0941 alone blocked MM cell proliferation independently of the presence of BM stromal cells and synergised with other therapeutic agents including Lenalidomide, Pomalidomide, Bortezomid and Dexamethasone. We also found that in the presence of MM cells, Dexamethasone (a drug commonly used alone or in combination with new drugs against MM) induced the proliferation of BM stromal cells and adhesion of MM cells on this protective stroma in a dose dependent manner. Dexamethasone is highly effective at MM cell killing when cells are cultured alone. However, we found that at low doses (below 1 uM) and in the presence of BM stromal cells, Dexamethasone could induce MM cell proliferation. GDC0941 enhanced Dexamethasone killing even in the presence of BM stromal cells by blocking Dexamethasone-induced stromal cell proliferation and adhesion of MM cells on the stroma. Targeting individual the PI3K Class IA isoforms alpha, beta, delta or gamma proved to be a less efficient strategy to enhance Dexamethasone killing. Previous work has shown that efficacy of targeting individual PI3K Class I A isoforms would be low for activation of caspases in MM cells as it would be dependent on relative amounts of isoforms expressed by the MM patient. GDC-0941 also inhibited the proliferation of MM1.R and RPMI8266 MM cell lines, which are less sensitive to treatment to Dexamethasone. Co-culture of MM cells with BM stromal cells induced the secretion of IL-10, IL-6, IL-8, MCP-1 and MIP1-alpha. The dose-dependant increased proliferation of Dexamethasone-treated MM cells in the presence of the BM stroma correlated with the pattern of secretion of IL-10 (a cytokine that can induce B-cell proliferation) and this was blocked by the combination of Dexamethasone with GDC0941. GDC-0941 alone or in combination with Dexamethasone was more efficacious at inducing MM cell apoptosis in the presence of the BM stroma cells vs treatment of MM cells alone. These are very encouraging results as they suggest that GDC-0941 in combination with Dexamethasone would be potentially highly efficacious for targeting MM cells in the BM microenvironment. We are currently performing in vivo data using C57BL/KaLwRij mice injected with 5T33-eGFP MM cells that will be discussed at the meeting. We propose that MM patients with active bony disease may benefit from treatment with GDC0941 alone or in combination with currently used therapeutic drugs against MM. Disclosures: No relevant conflicts of interest to declare.


Endocrinology ◽  
2012 ◽  
Vol 153 (1) ◽  
pp. 426-437 ◽  
Author(s):  
Mohan Singh ◽  
Parvesh Chaudhry ◽  
Sophie Parent ◽  
Eric Asselin

Cyclooxygenase (COX)-2 is a key regulatory enzyme in the production of prostaglandins (PG) during various physiological processes. Mechanisms of COX-2 regulation in human endometrial stromal cells (human endometrial stromal cells) are not fully understood. In this study, we investigate the role of TGF-β in the regulation of COX-2 in human uterine stromal cells. Each TGF-β isoform decreases COX-2 protein level in human uterine stromal cells in Smad2/3-dependent manner. The decrease in COX-2 is accompanied by a decrease in PG synthesis. Knockdown of Smad4 using specific small interfering RNA prevents the decrease in COX-2 protein, confirming that Smad pathway is implicated in the regulation of COX-2 expression in human endometrial stromal cells. Pretreatment with 26S proteasome inhibitor, MG132, significantly restores COX-2 protein and PG synthesis, indicating that COX-2 undergoes proteasomal degradation in the presence of TGF-β. In addition, each TGF-β isoform up-regulates endoplasmic reticulum (ER)-mannosidase I (ERManI) implying that COX-2 degradation is mediated through ER-associated degradation pathway in these cells. Furthermore, inhibition of ERManI activity using the mannosidase inhibitor (kifunensine), or small interfering RNA-mediated knockdown of ERManI, prevents TGF-β-induced COX-2 degradation. Taken together, these studies suggest that TGF-β promotes COX-2 degradation in a Smad-dependent manner by up-regulating the expression of ERManI and thereby enhancing ER-associated degradation and proteasomal degradation pathways.


2000 ◽  
pp. 477-480 ◽  
Author(s):  
B Gaffuri ◽  
L Airoldi ◽  
AM Di Blasio ◽  
P Vigano ◽  
AM Miragoli ◽  
...  

Although the mechanisms causing recurrent spontaneous abortion (RSA) remain frequently speculative, recent evidence indicates that a specific uterine immune-endocrine network plays a pivotal role in the continuation of pregnancy. We have recently demonstrated that an adhesion molecule of the immune system, named intercellular adhesion molecule (ICAM)-1, is markedly expressed at both protein and mRNA levels in endometrial stromal cells and is able to mediate their interaction with lymphoid cells. Moreover, we have shown that the soluble form of ICAM-1 (sICAM-1) can be released by the endometrium in a hormone-dependent manner. The present study was designed to determine whether surface and/or sICAM-1 expression by cultured endometrial stromal cells could be related to early pregnancy loss in patients with a history of unexplained RSA. Luteal-phase endometrial biopsies were obtained from eight patients who had experienced three or more consecutive unexplained RSAs in the first trimester and 12 control fertile women. Surface ICAM-1 was similarly expressed on luteal-phase endometrial cells obtained from women with and without a history of unexplained RSA. In contrast, the endometrial release of sICAM-1 was significantly lower in abortion-prone patients than in control women. sICAM-1 is a cytokine-inducible molecule able to interfere with several immunological responses and the reduced levels of the protein shed by the endometrium in patients who have suffered from unexplained RSAs may reflect the presence of an altered immunological environment during the early phases of pregnancy.


2019 ◽  
Author(s):  
Martin Wolf ◽  
Balazs Vari ◽  
Constantin Blöchl ◽  
Anna M Raninger ◽  
Rodolphe Poupardin ◽  
...  

ABSTRACTAllogeneic regenerative cell therapy has shown surprising results despite lack of engraftment of the transplanted cells. Their efficacy was so far considered to be mostly due to secreted trophic factors. We hypothesized that extracellular vesicles (EVs) can also contribute to their mode of action. Here we provide evidence that EVs derived from therapeutic placental-expanded (PLX) stromal cells are potent inducers of angiogenesis and modulate immune cell proliferation in a dose-dependent manner.Crude EVs were enriched >100-fold from large volume PLX conditioned media via tangential flow filtration (TFF) as determined by tunable resistive pulse sensing (TRPS). Additional TFF purification was devised to separate EVs from cell-secreted soluble factors. EV identity was confirmed by western blot, calcein-based flow cytometry and electron microscopy. Surface marker profiling of tetraspanin-positive EVs identified expression of cell-and matrix-interacting adhesion molecules. Differential tandem mass tag proteomics comparing PLX-EVs to PLX-derived soluble factors revealed significant differential enrichment of 258 proteins in purified PLX-EVs involved in angiogenesis, cell movement and immune system signaling. At the functional level, PLX-EVs and cells inhibited T cell mitogenesis. PLX-EVs and soluble factors displayed dose-dependent proangiogenic potential by enhancing tube-like structure formation in vitro.Our findings indicate that the mode of PLX action involves an EV-mediated proangiogenic function and immune response modulation that may help explaining clinical efficacy beyond presence of the transplanted allogeneic cells.


Blood ◽  
2000 ◽  
Vol 95 (10) ◽  
pp. 3094-3101 ◽  
Author(s):  
Ranita Sungaran ◽  
Orin T. Chisholm ◽  
Boban Markovic ◽  
Levon M. Khachigian ◽  
Yoshihiro Tanaka ◽  
...  

Thrombopoietin (TPO), the specific cytokine that regulates platelet production, is expressed in human bone marrow (BM), kidney, and liver. There appears to be no regulation of TPO in the kidney and liver, but TPO messenger RNA (mRNA) expression can be modulated in the stromal cells of the BM. In this study, we used primary human BM stromal cells as a model to study the regulation of TPO mRNA expression in response to various platelet -granular proteins. We showed that platelet-derived growth factor (PDGF) BB and fibroblast growth factor (FGF) 2 stimulated TPO mRNA expression in both a dose-dependent and time-dependent manner. The addition of 50 ng/mL of PDGF and 20 ng/mL of FGF resulted in maximal induction of TPO mRNA expression in 4 hours. We also found that platelet factor 4 (PF4), thrombospondin (TSP), and transforming growth factor-beta (TGF-β) are negative modulators of megakaryocytopoiesis. We observed suppression in TPO mRNA expression with 1 μg/mL of both PF4 and TSP and 50 ng/mL of TGF-β, with maximal suppression occurring 4 hours after the addition of these proteins. Finally, the addition of whole-platelet lysate produced a dose-dependent inhibition of TPO expression. On the basis of these findings, we propose that the platelet -granular proteins studied may regulate TPO gene expression in BM stromal cells by means of a feedback mechanism.


Sign in / Sign up

Export Citation Format

Share Document