Effects of Celecoxib and Nimesulide on the Proliferation of Ectopic Endometrial Stromal Cells in vitro

2008 ◽  
Vol 36 (5) ◽  
pp. 1032-1038 ◽  
Author(s):  
B Kong ◽  
Y Tian ◽  
W Zhu ◽  
S Su ◽  
Y Kan

The effects of cyclooxygenase 2 (COX-2) selective inhibitors on the proliferation of ectopic endometrial stromal cells in vitro were investigated. Ectopic endometrial stromal cells were treated with either celecoxib or nimesulide for 24 and 48 h. The results showed that (i) both celecoxib and nimesulide inhibited the proliferation of ectopic endometrial stromal cells in vitro in a time- and dose-dependent manner; (ii) the expression of prostaglandin E2 was significantly inhibited by both celecoxib and nimesulide in a dose-dependent manner; (iii) the percentage of apoptotic cells was significantly higher for cells treated with celecoxib or nimesulide than for untreated cells; and (iv) the percentage of the cells in the G0/G1 phase increased after the cells were treated with either agent in a dose-dependent manner. These data suggest that celecoxib and nimesulide inhibited proliferation of ectopic endometrial stromal cells by inducing apoptosis and blocking the cell cycle at the G0/G1 phase.

2004 ◽  
Vol 181 (3) ◽  
pp. 477-492 ◽  
Author(s):  
AA Fouladi Nashta ◽  
CV Andreu ◽  
N Nijjar ◽  
JK Heath ◽  
SJ Kimber

Decidualisation of uterine stromal cells is a prerequisite for implantation of the embryo in mice. Here we have used an in vitro culture system in which stromal cells decidualise as indicated by a number of markers, including an increase in alkaline phosphatase (ALP) activity. The latter was used as a quantitative marker of decidualisation in the presence of low (2%) fetal calf serum. Prostaglandin E(2) (PGE(2)), which is known to induce decidualisation, increased ALP activity, and this effect was blocked in a dose-dependent manner by indomethacin. Leukemia inhibitory factor (LIF) was then examined, but it had no effect on PGE(2) secretion. However, LIF suppressed ALP activity in a dose-dependent manner in the presence of 2% serum, while an inhibitor of LIF that competes for binding to its receptor reversed the effect of LIF and increased ALP activity above the control level. In serum-free cultures, stromal cells differentiated rapidly, and no differences were observed between LIF-treated and untreated cultures. Stromal cells produce LIF during in vitro culture, and this peaked at 48 h. Freshly collected stromal cells from both day-2 and -4 pregnant mice expressed mRNA for the LIF receptor, and the transcript level was higher in cells isolated on day 4. However, no differences were observed in the relative levels of transcripts in cells from day 2 and day 4 after culture, nor were there differences between the LIF-treated cultures and controls. Therefore, in this study, we have shown that LIF suppresses decidualisation of murine uterine stromal cells in the presence of serum, this is not due to the regulation of PGE(2) secretion by stromal cells.


2014 ◽  
Vol 223 (2) ◽  
pp. 203-216 ◽  
Author(s):  
Yoshihiro Joshua Ono ◽  
Yoshito Terai ◽  
Akiko Tanabe ◽  
Atsushi Hayashi ◽  
Masami Hayashi ◽  
...  

Dienogest, a synthetic progestin, has been shown to be effective against endometriosis, although it is still unclear as to how it affects the ectopic endometrial cells. Decorin has been shown to be a powerful endogenous tumor repressor acting in a paracrine fashion to limit tumor growth. Our objectives were to examine the direct effects of progesterone and dienogest on the in vitro proliferation of the human ectopic endometrial epithelial and stromal cell lines, and evaluate as to how decorin contributes to this effect. We also examined DCN mRNA expression in 50 endometriosis patients. The growth of both cell lines was inhibited in a dose-dependent manner by both decorin and dienogest. Using a chromatin immunoprecipitation assay, it was noted that progesterone and dienogest directly induced the binding of the decorin promoter in the EMOsis cc/TERT cells (immortalized human ovarian epithelial cells) and CRL-4003 cells (immortalized human endometrial stromal cells). Progesterone and dienogest also led to significant induced cell cycle arrest via decorin by promoting production of p21 in both cell lines in a dose-dependent manner. Decorin also suppressed the expression of MET in both cell lines. We confirmed that DCN mRNA expression in patients treated with dienogest was higher than that in the control group. In conclusion, decorin induced by dienogest appears to play a crucial role in suppressing endometriosis by exerting anti-proliferative effects and inducing cell cycle arrest via the production of p21 human ectopic endometrial cells and eutopic endometrial stromal cells.


Reproduction ◽  
2020 ◽  
Vol 159 (4) ◽  
pp. 453-463 ◽  
Author(s):  
Ana Cecilia Mestre Citrinovitz ◽  
Laila Langer ◽  
Thomas Strowitzki ◽  
Ariane Germeyer

The differentiation of endometrial stromal cells (ESC), named decidualization, is essential to regulate trophoblast invasion and to support pregnancy establishment and progression. Decidualization follows ESC proliferation and it has been described that cell cycle arrest contributes to a proper decidualization. Interestingly, resveratrol, a natural compound derived from grapes with antioxidant properties, has been widely studied in relation to endometrial health. However, little is known about the effect of resveratrol supplementation during decidualization. Therefore, in this study we evaluate the effect of resveratrol supplementation during decidualization. We used primary and immortalized human ESC and we decidualized them in vitro with a decidualization cocktail containing medroxyprogesterone acetate, estradiol and 8-Bromo-cyclic AMP. Pre-decidualized cells were further treated with the decidualization cocktail supplemented with resveratrol. Our results show that resveratrol supplementation increased, in a dose-dependent manner, the expression levels of prolactin and IGFBP1 (RT-PCR and ELISA), indicating an enhanced in vitro decidualization of human ESC. This enhanced decidualization was accompanied by a decrease in cell proliferation (crystal violet and CellTiter proliferation assay) and by changes in the mRNA levels of key cell cycle regulators (RT-PCR). Furthermore, resveratrol supplementation seemed to enhance decidualization by reinforcing the effect of the decidualization cocktail. We believe that resveratrol could to be an effective supplementation to reinforce hormone action during human ESC decidualization and that further insights into resveratrol action and its interaction with estradiol and progesterone signaling pathways could facilitate the identification of new therapeutic strategies for the improvement of women’s health.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2178
Author(s):  
Fabio Morandi ◽  
Veronica Bensa ◽  
Enzo Calarco ◽  
Fabio Pastorino ◽  
Patrizia Perri ◽  
...  

Neuroblastoma (NB) is the most common extra-cranial solid tumor of pediatric age. The prognosis for high-risk NB patients remains poor, and new treatment strategies are desirable. The olive leaf extract (OLE) is constituted by phenolic compounds, whose health beneficial effects were reported. Here, the anti-tumor effects of OLE were investigated in vitro on a panel of NB cell lines in terms of (i) reduction of cell viability; (ii) inhibition of cell proliferation through cell cycle arrest; (iii) induction of apoptosis; and (iv) inhibition of cell migration. Furthermore, cytotoxicity experiments, by combining OLE with the chemotherapeutic topotecan, were also performed. OLE reduced the cell viability of NB cells in a time- and dose-dependent manner in 2D and 3D models. NB cells exposed to OLE underwent inhibition of cell proliferation, which was characterized by an arrest of the cell cycle progression in G0/G1 phase and by the accumulation of cells in the sub-G0 phase, which is peculiar of apoptotic death. This was confirmed by a dose-dependent increase of Annexin V+ cells (peculiar of apoptosis) and upregulation of caspases 3 and 7 protein levels. Moreover, OLE inhibited the migration of NB cells. Finally, the anti-tumor efficacy of the chemotherapeutic topotecan, in terms of cell viability reduction, was greatly enhanced by its combination with OLE. In conclusion, OLE has anti-tumor activity against NB by inhibiting cell proliferation and migration and by inducing apoptosis.


Endocrinology ◽  
2012 ◽  
Vol 153 (1) ◽  
pp. 426-437 ◽  
Author(s):  
Mohan Singh ◽  
Parvesh Chaudhry ◽  
Sophie Parent ◽  
Eric Asselin

Cyclooxygenase (COX)-2 is a key regulatory enzyme in the production of prostaglandins (PG) during various physiological processes. Mechanisms of COX-2 regulation in human endometrial stromal cells (human endometrial stromal cells) are not fully understood. In this study, we investigate the role of TGF-β in the regulation of COX-2 in human uterine stromal cells. Each TGF-β isoform decreases COX-2 protein level in human uterine stromal cells in Smad2/3-dependent manner. The decrease in COX-2 is accompanied by a decrease in PG synthesis. Knockdown of Smad4 using specific small interfering RNA prevents the decrease in COX-2 protein, confirming that Smad pathway is implicated in the regulation of COX-2 expression in human endometrial stromal cells. Pretreatment with 26S proteasome inhibitor, MG132, significantly restores COX-2 protein and PG synthesis, indicating that COX-2 undergoes proteasomal degradation in the presence of TGF-β. In addition, each TGF-β isoform up-regulates endoplasmic reticulum (ER)-mannosidase I (ERManI) implying that COX-2 degradation is mediated through ER-associated degradation pathway in these cells. Furthermore, inhibition of ERManI activity using the mannosidase inhibitor (kifunensine), or small interfering RNA-mediated knockdown of ERManI, prevents TGF-β-induced COX-2 degradation. Taken together, these studies suggest that TGF-β promotes COX-2 degradation in a Smad-dependent manner by up-regulating the expression of ERManI and thereby enhancing ER-associated degradation and proteasomal degradation pathways.


Endocrinology ◽  
2014 ◽  
Vol 155 (5) ◽  
pp. 1921-1930 ◽  
Author(s):  
Tae Hoon Kim ◽  
Yanni Yu ◽  
Lily Luo ◽  
John P. Lydon ◽  
Jae-Wook Jeong ◽  
...  

The pathogenesis of endometriosis remains unclear, and relatively little is known about the mechanisms that promote establishment and survival of the disease. Previously, we demonstrated that v-akt murine thymoma viral oncogene homolog (AKT) activity was increased in endometriosis tissues and cells from ovarian endometriomas and that this increase promoted cell survival as well as decreased levels of progesterone receptor. The objective of this study was to demonstrate a role for AKT in the establishment of ectopic lesions. First, a dose-dependent inhibition of AKT in stromal cells from human ovarian endometriomas (OSIS) as well as endometrial stromal cells from disease-free patients (ESC) with the allosteric AKT inhibitor MK-2206 was demonstrated by decreased levels of phosphorylated (p)(Ser473)-AKT. Levels of the AKT target protein, p(Ser256)-forkhead box O1 were increased in OSIS cells, which decreased with MK-2206 treatment, whereas levels of p(Ser9)-glycogen synthase kinase 3β did not change in response to MK-2206. Although MK-2206 decreased viability of both OSIS and ESC in a dose-dependent manner, proliferation of OSIS cells was differentially decreased significantly compared with ESC. Next, the role of hyperactive AKT in the establishment of ectopic lesions was studied using the bigenic, PRcre/+Ptenf/+ heterozygous mouse. Autologous implantation of uterine tissues was performed in these mice. After 4 weeks, an average of 4 ± 0.33 lesions per Ptenf/+ mouse and 7.5 ± 0.43 lesions in the PRcre/+Ptenf/+ mouse were found. Histological examination of the lesions showed endometrial tissue-like morphology, which was similar in both the Ptenf/+ and PRcre/+Ptenf/+ mice. Treatment of mice with MK-2206 resulted in a significantly decreased number of lesions established. Immunohistochemical staining of ectopic lesions revealed decreased p(Ser473)-AKT and the proliferation marker Ki67 from MK-2206–treated mice compared with vehicle-treated mice. Furthermore, levels of FOXO1 and progesterone receptor increased in lesions of mice receiving MK-2206. These results demonstrate that heightened AKT activity plays an active role in the establishment of ectopic endometrial tissues.


2019 ◽  
Author(s):  
Martin Wolf ◽  
Balazs Vari ◽  
Constantin Blöchl ◽  
Anna M Raninger ◽  
Rodolphe Poupardin ◽  
...  

ABSTRACTAllogeneic regenerative cell therapy has shown surprising results despite lack of engraftment of the transplanted cells. Their efficacy was so far considered to be mostly due to secreted trophic factors. We hypothesized that extracellular vesicles (EVs) can also contribute to their mode of action. Here we provide evidence that EVs derived from therapeutic placental-expanded (PLX) stromal cells are potent inducers of angiogenesis and modulate immune cell proliferation in a dose-dependent manner.Crude EVs were enriched >100-fold from large volume PLX conditioned media via tangential flow filtration (TFF) as determined by tunable resistive pulse sensing (TRPS). Additional TFF purification was devised to separate EVs from cell-secreted soluble factors. EV identity was confirmed by western blot, calcein-based flow cytometry and electron microscopy. Surface marker profiling of tetraspanin-positive EVs identified expression of cell-and matrix-interacting adhesion molecules. Differential tandem mass tag proteomics comparing PLX-EVs to PLX-derived soluble factors revealed significant differential enrichment of 258 proteins in purified PLX-EVs involved in angiogenesis, cell movement and immune system signaling. At the functional level, PLX-EVs and cells inhibited T cell mitogenesis. PLX-EVs and soluble factors displayed dose-dependent proangiogenic potential by enhancing tube-like structure formation in vitro.Our findings indicate that the mode of PLX action involves an EV-mediated proangiogenic function and immune response modulation that may help explaining clinical efficacy beyond presence of the transplanted allogeneic cells.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Dongrong Zhu ◽  
Chen Chen ◽  
Lijuan Bai ◽  
Lingyi Kong ◽  
Jianguang Luo

Background. Pharbitis Semen, the seeds ofPharbitis nil, is widely used as a traditional purgative medicine in China, Korea, and Japan. This study investigated the laxative effects of a purified resin glycoside fraction obtained in our previous study from Pharbitis Semen in vivo and in vitro.Materials and Methods. After orally administering a purified resin glycoside fraction from Pharbitis Semen (RFP) to rats, the content of fecal water, AQP3, NF-κB, COX-2 expression, and the prostaglandin E2(PGE2) concentrations in the colon were examined. Moreover, human intestinal epithelial cells (HT-29) were used to investigate the mechanism of RFP decreasing the AQP3 expression.Results. Results obtained showed that treatment with RFP increased the feces excretion and fecal water content of rats in a dose-dependent manner. More interestingly, AQP3 expression was suppressed by RFP treatment both in the rat colons and in HT-29 cells, while the NF-κB pathway-mediated PGE2production was activated. Interestingly, pretreating rats with BAY-11-7082 (NF-κB inhibitor) or indomethacin (COX-2 inhibitor) and RFP neither induced diarrhea nor decreased the AQP3 expression in the colon.Conclusions. The purgative property of the purified resin glycoside fraction was attributed to NF-κB activation in the colon, which increased the COX-2-mediated secretion of PGE2. PGE2decreased AQP3 expression which inhibits water absorbed from the intestine to the blood vessel side, resulting in the laxative effect of RFP.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3367-3367 ◽  
Author(s):  
Weiguo Zhang ◽  
Marina Konopleva ◽  
Teresa McQueen ◽  
Jorje Cortes ◽  
James McCubrey ◽  
...  

Abstract We have previously demonstrated constitutive activation of MAPK signaling in 70% of primary AML samples (Millela et al, JCI108:851–859, 2001), suggesting that upstream kinases (Raf and MEK) may play a role in the leukemic transformation of myeloid cells. BAY 43-9006 is a small molecule Raf kinase inhibitor that has demonstrated potent anti-tumor activity against solid human tumors in xenograft models. In this study, we tested the hypothesis that BAY 43-9006 inhibits leukemia cell growth and/or induces apoptosis by suppressing the activity of the MAPK pathway. In the in vitro kinase assay, BAY 43-9006 inhibited both Raf-1 and B-Raf-mediated MEK1 phosphorylation in a dose-dependent manner, with Raf-1 kinase being more sensitive to the inhibitory effects of BAY 43-9006 (IC50Raf-1, 1.37 μM vs. IC50B-Raf, 4.64 μM). BAY 43-9006 suppressed MEK1/2 and ERK phosphorylation in the AML cell lines OCI-AML3, HL-60, U937 and KG-1 in a dose-dependent manner after 24 hr treatment. Unexpectedly, BAY 43-9006 also inhibited AKT phosphorylation on Ser473 (after 4.5 hrs). BAY 43-9006 inhibited growth of AML cells in a dose- and time-dependent manner. The 50% inhibitory concentration (IC50) of BAY 43-9006 was 0.39, 1.14, 2.86 and 2.80 μM, respectively in OCI-AML3, HL-60, U937 and KG-1 cells after 72 hrs. This growth-inhibitory effect was mediated by a dose-dependent induction of cell cycle arrest in G1 mediated by the down-regulation of the cell cycle-related proteins cyclin E, cdk2 and cdc2, followed by induction of apoptosis after 72 hrs. In primary AML patient samples, BAY 43-9006 not only inhibited cell growth and induced apoptosis after 48–72 hrs in vitro, but also preferentially inhibited colony formation of AML progenitor cells compared to normal bone marrow cells [IC50: 2.33 μM vs. 9.34μM (CFU-GM), 5.69 μM (Erythroid) and 3.75 μM (Mixed), respectively]. Time-course analyses demonstrated that BAY 43-9006 suppressed phosphorylation of the pro-apoptotic protein Bim (at 4.5 hrs), caused loss of the mitochondrial membrane potential and cytochrome c release (at 6 hrs) followed by cleavage of caspases-3 and -9 but not of caspase-8, suggesting primary involvement of the intrinsic mitochondrial pathway. Furthermore, the pro-apoptotic proteins Bim and Bax were up-regulated after 48 hrs of BAY 43-9006 treatment, and the level of the inhibitor-of-apoptosis protein Survivin was down-regulated after 48 hrs. In summary, our data demonstrates that BAY 43-9006 inhibits Raf-MEK-ERK signaling and induces apoptosis in AML via Bim de-phosphorylation and activation of the intrinsic apoptotic pathway. The potential of BAY 43-9006 in the therapy of AML patients will be tested in a Phase I clinical trial.


Sign in / Sign up

Export Citation Format

Share Document