scholarly journals Activated AKT Pathway Promotes Establishment of Endometriosis

Endocrinology ◽  
2014 ◽  
Vol 155 (5) ◽  
pp. 1921-1930 ◽  
Author(s):  
Tae Hoon Kim ◽  
Yanni Yu ◽  
Lily Luo ◽  
John P. Lydon ◽  
Jae-Wook Jeong ◽  
...  

The pathogenesis of endometriosis remains unclear, and relatively little is known about the mechanisms that promote establishment and survival of the disease. Previously, we demonstrated that v-akt murine thymoma viral oncogene homolog (AKT) activity was increased in endometriosis tissues and cells from ovarian endometriomas and that this increase promoted cell survival as well as decreased levels of progesterone receptor. The objective of this study was to demonstrate a role for AKT in the establishment of ectopic lesions. First, a dose-dependent inhibition of AKT in stromal cells from human ovarian endometriomas (OSIS) as well as endometrial stromal cells from disease-free patients (ESC) with the allosteric AKT inhibitor MK-2206 was demonstrated by decreased levels of phosphorylated (p)(Ser473)-AKT. Levels of the AKT target protein, p(Ser256)-forkhead box O1 were increased in OSIS cells, which decreased with MK-2206 treatment, whereas levels of p(Ser9)-glycogen synthase kinase 3β did not change in response to MK-2206. Although MK-2206 decreased viability of both OSIS and ESC in a dose-dependent manner, proliferation of OSIS cells was differentially decreased significantly compared with ESC. Next, the role of hyperactive AKT in the establishment of ectopic lesions was studied using the bigenic, PRcre/+Ptenf/+ heterozygous mouse. Autologous implantation of uterine tissues was performed in these mice. After 4 weeks, an average of 4 ± 0.33 lesions per Ptenf/+ mouse and 7.5 ± 0.43 lesions in the PRcre/+Ptenf/+ mouse were found. Histological examination of the lesions showed endometrial tissue-like morphology, which was similar in both the Ptenf/+ and PRcre/+Ptenf/+ mice. Treatment of mice with MK-2206 resulted in a significantly decreased number of lesions established. Immunohistochemical staining of ectopic lesions revealed decreased p(Ser473)-AKT and the proliferation marker Ki67 from MK-2206–treated mice compared with vehicle-treated mice. Furthermore, levels of FOXO1 and progesterone receptor increased in lesions of mice receiving MK-2206. These results demonstrate that heightened AKT activity plays an active role in the establishment of ectopic endometrial tissues.

2008 ◽  
Vol 36 (5) ◽  
pp. 1032-1038 ◽  
Author(s):  
B Kong ◽  
Y Tian ◽  
W Zhu ◽  
S Su ◽  
Y Kan

The effects of cyclooxygenase 2 (COX-2) selective inhibitors on the proliferation of ectopic endometrial stromal cells in vitro were investigated. Ectopic endometrial stromal cells were treated with either celecoxib or nimesulide for 24 and 48 h. The results showed that (i) both celecoxib and nimesulide inhibited the proliferation of ectopic endometrial stromal cells in vitro in a time- and dose-dependent manner; (ii) the expression of prostaglandin E2 was significantly inhibited by both celecoxib and nimesulide in a dose-dependent manner; (iii) the percentage of apoptotic cells was significantly higher for cells treated with celecoxib or nimesulide than for untreated cells; and (iv) the percentage of the cells in the G0/G1 phase increased after the cells were treated with either agent in a dose-dependent manner. These data suggest that celecoxib and nimesulide inhibited proliferation of ectopic endometrial stromal cells by inducing apoptosis and blocking the cell cycle at the G0/G1 phase.


2014 ◽  
Vol 223 (2) ◽  
pp. 203-216 ◽  
Author(s):  
Yoshihiro Joshua Ono ◽  
Yoshito Terai ◽  
Akiko Tanabe ◽  
Atsushi Hayashi ◽  
Masami Hayashi ◽  
...  

Dienogest, a synthetic progestin, has been shown to be effective against endometriosis, although it is still unclear as to how it affects the ectopic endometrial cells. Decorin has been shown to be a powerful endogenous tumor repressor acting in a paracrine fashion to limit tumor growth. Our objectives were to examine the direct effects of progesterone and dienogest on the in vitro proliferation of the human ectopic endometrial epithelial and stromal cell lines, and evaluate as to how decorin contributes to this effect. We also examined DCN mRNA expression in 50 endometriosis patients. The growth of both cell lines was inhibited in a dose-dependent manner by both decorin and dienogest. Using a chromatin immunoprecipitation assay, it was noted that progesterone and dienogest directly induced the binding of the decorin promoter in the EMOsis cc/TERT cells (immortalized human ovarian epithelial cells) and CRL-4003 cells (immortalized human endometrial stromal cells). Progesterone and dienogest also led to significant induced cell cycle arrest via decorin by promoting production of p21 in both cell lines in a dose-dependent manner. Decorin also suppressed the expression of MET in both cell lines. We confirmed that DCN mRNA expression in patients treated with dienogest was higher than that in the control group. In conclusion, decorin induced by dienogest appears to play a crucial role in suppressing endometriosis by exerting anti-proliferative effects and inducing cell cycle arrest via the production of p21 human ectopic endometrial cells and eutopic endometrial stromal cells.


2014 ◽  
Vol 49 (3) ◽  
pp. 403-408 ◽  
Author(s):  
SG Chethan ◽  
SK Singh ◽  
J Nongsiej ◽  
HB Rakesh ◽  
RP Singh ◽  
...  

Reproduction ◽  
2018 ◽  
Author(s):  
Qianrong Qi ◽  
Yifan Yang ◽  
Kailin Wu ◽  
Qingzhen Xie

Recent studies revealed that TMEM16A is involved in several reproductive processes, including ovarian estrogen secretion and ovulation, sperm motility and acrosome reaction, fertilization, and myometrium contraction. However, little is known about the expression and function of TMEM16A in embryo implantation and decidualization. In this study, we focused on the expression and regulation of TMEM16A in mouse uterus during early pregnancy. We found that TMEM16A is up-regulated in uterine endometrium in response to embryo implantation and decidualization. Progesterone treatment could induce TMEM16A expression in endometrial stromal cells through progesterone receptor/c-Myc pathway, which is blocked by progesterone receptor antagonist or the inhibitor of c-Myc signaling pathway. Inhibition of TMEM16A by small molecule inhibitor (T16Ainh-A01) resulted in impaired embryo implantation and decidualization in mice. Treatment with either specific siRNA of Tmem16a or T16Ainh-A01 inhibited the decidualization and proliferation of mouse endometrial stromal cells. In conclusion, our results revealed that TMEM16A is involved in embryo implantation and decidualization in mice, compromised function of TMEM16A may lead to impaired embryo implantation and decidualization.


2004 ◽  
Vol 181 (3) ◽  
pp. 477-492 ◽  
Author(s):  
AA Fouladi Nashta ◽  
CV Andreu ◽  
N Nijjar ◽  
JK Heath ◽  
SJ Kimber

Decidualisation of uterine stromal cells is a prerequisite for implantation of the embryo in mice. Here we have used an in vitro culture system in which stromal cells decidualise as indicated by a number of markers, including an increase in alkaline phosphatase (ALP) activity. The latter was used as a quantitative marker of decidualisation in the presence of low (2%) fetal calf serum. Prostaglandin E(2) (PGE(2)), which is known to induce decidualisation, increased ALP activity, and this effect was blocked in a dose-dependent manner by indomethacin. Leukemia inhibitory factor (LIF) was then examined, but it had no effect on PGE(2) secretion. However, LIF suppressed ALP activity in a dose-dependent manner in the presence of 2% serum, while an inhibitor of LIF that competes for binding to its receptor reversed the effect of LIF and increased ALP activity above the control level. In serum-free cultures, stromal cells differentiated rapidly, and no differences were observed between LIF-treated and untreated cultures. Stromal cells produce LIF during in vitro culture, and this peaked at 48 h. Freshly collected stromal cells from both day-2 and -4 pregnant mice expressed mRNA for the LIF receptor, and the transcript level was higher in cells isolated on day 4. However, no differences were observed in the relative levels of transcripts in cells from day 2 and day 4 after culture, nor were there differences between the LIF-treated cultures and controls. Therefore, in this study, we have shown that LIF suppresses decidualisation of murine uterine stromal cells in the presence of serum, this is not due to the regulation of PGE(2) secretion by stromal cells.


2007 ◽  
Vol 21 (10) ◽  
pp. 2334-2349 ◽  
Author(s):  
Masashi Takano ◽  
Zhenxiao Lu ◽  
Tomoko Goto ◽  
Luca Fusi ◽  
Jenny Higham ◽  
...  

Abstract Differentiation of human endometrial stromal cells (HESCs) into decidual cells is associated with induction of the forkhead transcription factor forkhead box O1A (FOXO1). We performed a genomic screen to identify decidua-specific genes under FOXO1 control. Primary HESCs were transfected with small interfering RNA targeting FOXO1 or with nontargeting control small interfering RNA before treatment with a cAMP analogue and the progestin, medroxyprogesterone acetate for 72 h. Total RNA was processed for whole genome analysis using high-density oligonucleotide arrays. We identified 3405 significantly regulated genes upon decidualization of HESCs, 507 (15.3%) of which were aberrantly expressed upon FOXO1 knockdown. Among the most up-regulated FOXO1-dependent transcriptional targets were WNT signaling-related genes (WNT4, WNT16 ), the insulin receptor (INSR), differentiation markers (PRL, IGFBP1, and LEFTY2), and the cyclin-dependent kinase inhibitor p57Kip2 (CDKN1C). Analysis of FOXO1-dependent down-regulated genes uncovered several factors involved in cell cycle regulation, including CCNB1, CCNB2, MCM5, CDC2 and NEK2. Cell viability assay and cell cycle analysis demonstrated that FOXO1 silencing promotes proliferation of differentiating HESCs. Using a glutathione-S-transferase pull-down assay, we confirmed that FOXO1 interacts with progesterone receptor, irrespectively of the presence of ligand. In agreement, knockdown of PR disrupted the regulation of FOXO1 target genes involved in differentiation (IGFBP1, PRL, and WNT4) and cell cycle regulation (CDKN1, CCNB2 and CDC2) in HESCs treated with either cAMP plus medroxyprogesterone acetate or with cAMP alone. Together, the data demonstrate that FOXO1 engages in transcriptional cross talk with progesterone receptor to coordinate cell cycle regulation and differentiation of HESCs.


Author(s):  
Xiaoling Wu ◽  
Zhiqin Yang ◽  
Huimin Dang ◽  
Huixia Peng ◽  
Zhijun Dai

Baicalein, a flavonoid derived from the root of Scutellaria baicalensis, has been reported to possess multiple pharmacological activities, such as anticancer and anti-inflammatory properties. This study investigated the effect of baicalein in cervical cancer cells. Cell growth curve and MTT assay were performed and revealed that baicalein inhibited the proliferation of SiHa and HeLa cells in a dose-dependent manner. We further found that baicalein arrested the cell cycle of SiHa and HeLa cells at the G0/G1 phase by suppressing the expression of cyclin D1 through the downregulation of phosphorylated protein kinase B (p-AKT) and phosphorylated glycogen synthase kinase 3β (p-GSK3β) according to FACS assays and Western blotting. Moreover, when CHIR-99021, a GSK3β inhibitor, was added to baicalein-treated SiHa cells, the expression of cyclin D1 was recovered, and cell proliferation was promoted. In conclusion, these data indicated that baicalein suspended the cell cycle at the G0/G1 phase via the downregulation of cyclin D1 through the AKT‐GSK3β signaling pathway and further inhibited the proliferation of SiHa and HeLa cervical cancer cells.


1989 ◽  
Vol 66 (3) ◽  
pp. 1471-1476 ◽  
Author(s):  
H. Lum ◽  
P. J. Del Vecchio ◽  
A. S. Schneider ◽  
M. S. Goligorsky ◽  
A. B. Malik

We examined whether the increase in endothelial albumin permeability induced by alpha-thrombin is dependent on extracellular Ca2+ influx. Permeability of 125I-albumin across confluent monolayers of cultured bovine pulmonary artery endothelial cells was measured before and after the addition of 0.1 microM alpha-thrombin. In the presence of normal extracellular Ca2+ concentration ([Ca2+]o, 1000 microM), alpha-thrombin produced a 175 +/- 10% increase in 125I-albumin permeability. At lower [Ca2+]o (100, 10, 1, or less than 1 microM), alpha-thrombin caused a 140% increase in permeability (P less than 0.005). LaCl3 (1 mM), which competes for Ca2+ entry, blunted 38% of the increase in permeability. Preloading endothelial monolayers with quin2 to buffer cytosolic Ca2+ (Cai2+) produced a dose-dependent inhibition of the increase in 125I-albumin permeability. Preincubation with nifedipine or verapamil was ineffective in reducing the thrombin-induced permeability increase. A 60 mM K+ isosmotic solution did not alter base-line endothelial permeability. alpha-Thrombin increased [Ca2+]i in a dose-dependent manner and the 45Ca2+ influx rate. Extracellular medium containing 60 mM K+ did not increase 45Ca2+ influx, and nifedipine did not block the rise in 45Ca2+ influx caused by alpha-thrombin. Ca2+ flux into endothelial cells induced by alpha-thrombin does not occur through voltage-sensitive channels but may involve receptor-operated channels. In conclusion, the increase in endothelial albumin permeability caused by alpha-thrombin is dependent on Ca2+ influx and intracellular Ca2+ mobilization.


1987 ◽  
Author(s):  
S E D’Souza ◽  
M H Ginaberg ◽  
S Lam ◽  
E A Plow

The platelet adhesive proteins, fibrinogen, fibronectin and von WillebrandFactor, contain RGD amino acid sequences; RGD-containing peptides inhibit the binding of these adhesive proteins to platelets; and a membrane receptor for these adhesive proteins binds to Arg-Gly-Asp and contains GPIIb-IIIa. The present study was undertaken to characterize the interaction of RGDpeptides with GPIIb-IIIa using a chemical crosslinking approach. A radioiodinated RGD-containing heptapeptide was bound to washed human platelets under conditions at which ≥ 85% of theinteraction was inhibited by excess nonlabeled peptide. After binding of the peptide to platelets for 45 min at22°, a homobifunctional crosslinking reagent was added, and the platelets were extracted and analyzed on polyacrylamide gels. With resting platelets,autoradiography of the gels revealedthat the peptide crosslinked tobothGPIIb and GPIIIa. This interaction wasinhibited by excess nonlabeled peptide but not by certain conservatively substituted RGD peptides. Stimulation of the platelets caused a dramatic increase in crosslinking of the peptide to only one of the two subunitsof GPIIb-IIIa. The stimulus dependentincrease in the crosslinking reactionwas specific and saturable as it was inhibited by RGD peptides in a dose dependent manner. In addition, peptides corresponding in structure to the carboxy terminus of the γ chain of fibrinogen also produced concentration dependent inhibition of the interaction. The increase in crosslinking induced by platelet stimulation was divalent ion dependent. Similar results werealso obtained with a second, larger RGD-containing peptide and with asecond chemical crosslinking reagent.Theseresults indicate that platelet stimulation in the presence of divalent ions causes a change which permitsmoreefficient crosslinking of RGD-containing peptides to only one of the two subunits of GPIIb-IIIa. The results are also compatible with a proximalrelationship of both subunits tothe RGD binding sites on the plateletmembrane.


Blood ◽  
1991 ◽  
Vol 77 (5) ◽  
pp. 1006-1012 ◽  
Author(s):  
AB Kelly ◽  
UM Marzec ◽  
W Krupski ◽  
A Bass ◽  
Y Cadroy ◽  
...  

Abstract To determine the role of thrombin in high blood flow, platelet- dependent thrombotic and hemostatic processes we measured the relative antithrombotic and antihemostatic effects in baboons of hirudin, a highly potent and specific antithrombin, and compared the effects of heparin, an antithrombin III-dependent inhibitor of thrombin. Thrombus formation was determined in vivo using three relevant models (homologous endarterectomized aorta, collagen-coated tubing, and Dacron vascular graft) by measuring: (1) platelet deposition, using gamma camera imaging of 111In-platelets; (2) fibrin deposition, as assessed by the incorporation of circulating 125I-fibrinogen; and (3) occlusion. The continuous intravenous infusion of 1, 5, and 20 nmol/kg per minute of recombinant hirudin (desulfatohirudin) maintained constant plasma levels of 0.16 +/- 0.03, 0.79 +/- 0.44, and 3.3 +/- 0.77 mumol/mL, respectively. Hirudin interrupted platelet and fibrin deposition in a dose-dependent manner that was profound at the highest dose for all three thrombogenic surfaces and significant at the lowest dose for thrombus formation on endarterectomized aorta. Thrombotic occlusion was prevented by all doses studied. In contrast, heparin did not inhibit either platelet or fibrin deposition when administered at a dose that maximally prolonged clotting times (100 U/kg) (P greater than .1), and only intermediate effects were produced at 10-fold that dose (1,000 U/kg). Moreover, heparin did not prevent occlusion of the test segments. Hirudin inhibited platelet hemostatic function in concert with its antithrombotic effects (bleeding times were prolonged by the intermediate and higher doses). By comparison, intravenous heparin failed to affect the bleeding time at the 100 U/kg dose (P greater than .5), and only minimally prolonged the bleeding time at the 1,000 U/kg dose (P less than .05). We conclude that platelet-dependent thrombotic and hemostatic processes are thrombin-mediated and that the biologic antithrombin hirudin produces a potent, dose-dependent inhibition of arterial thrombus formation that greatly exceeds the minimal antithrombotic effects produced by heparin.


Sign in / Sign up

Export Citation Format

Share Document