Static Stability of a Compound Wing Configuration in Ground Effect

2014 ◽  
Vol 69 (7) ◽  
Author(s):  
Saeed Jamei ◽  
Adi Maimun ◽  
M. Mobassher Tofa ◽  
Nor Azwadi ◽  
Shuhaimi Mansor ◽  
...  

The height static stability of a wing can be a main concern for conceptual design of wing-in-ground effect (WIG) crafts. In this research, the stability of a rectangular and compound wing was computationally predicted in ground effect. A realizable k-ε turbulent model was used for simulation the flow filed over the wing surfaces. First, the drag coefficient and lift to drag ratio of numerical simulation were validated by experimental data of the rectangular wing. Next, the stability of the compound wing respect to different ground clearances will be determined and compared with rectangular wing. This study illustrated a deep understanding of static stability of present compound wing in ground effect, which eventually can be a guideline for researchers and designers of WIG craft.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
M. Mobassher Tofa ◽  
Adi Maimun ◽  
Yasser M. Ahmed ◽  
Saeed Jamei ◽  
Agoes Priyanto ◽  
...  

The aerodynamic characteristics of the wing-in-ground effect (WIG) craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM) wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future.


2021 ◽  
Vol 2131 (3) ◽  
pp. 032030
Author(s):  
A Luchkov ◽  
E Cheban ◽  
E Zhuravlev

Abstract The paper analyzes the methods and formulas for calculating the lift force coefficient Сy of a simple wing with washers from the point of view of the possibility of using it in preliminary design of wing-in-ground-effect crafts. 5 methods were identified that allow calculating the increase in the lift force coefficient from the action of the ground effect. Adequacy was checked by comparing the calculation results for each of the methods with the experimental data of the blowing of 3 variants of the wings in wind tunnels with washers at different aspect ratio, angles of attack and flight altitudes for the TsAGI-876 profile. Also done a numerical simulation of the flow around a rectangular wing with washers with various geometric and hydrodynamic characteristics was carried out. The analysis of the calculated, experimental and numerical results showed that the most expedient use in preliminary design P. A. Amplitov and the method of J. D. Anderson methods. At the same time, one of them is also capable of determining the values of the lift force coefficient in the zone of supercritical angles of attack with an error not exceeding 4-8% for cruising angles of attack of the wing of wing-in-ground-effect crafts.


Aerospace ◽  
2020 ◽  
Vol 7 (5) ◽  
pp. 51 ◽  
Author(s):  
Clayton Humphreys-Jennings ◽  
Ilias Lappas ◽  
Dragos Mihai Sovar

The Blended Wing Body (BWB) configuration is considered to have the potential of providing significant advantages when compared to conventional aircraft designs. At the same time, numerous studies have reported that technical challenges exist in many areas of its design, including stability and control. This study aims to create a novel BWB design to test its flying and handling qualities using an engineering flight simulator and as such, to identify potential design solutions which will enhance its controllability and manoeuvrability characteristics. This aircraft is aimed toward the commercial sector with a range of 3000 nautical miles, carrying 200 passengers. The BWB design was flight tested at an engineering flight simulator to first determine its static stability through a standard commercial mission profile, and then to determine its dynamic stability characteristics through standard dynamic modes. Its flying qualities suggested its stability with a static margin of 8.652% of the mean aerodynamic chord (MAC) and consistent response from the pilot input. In addition, the aircraft achieved a maximum lift-to-drag ratio of 28.1; a maximum range of 4,581 nautical miles; zero-lift drag of 0.005; while meeting all the requirements of the dynamic modes.


2019 ◽  
pp. 67-69
Author(s):  
Morgan Behrel ◽  
Kostia Roncin ◽  
Damien Grelon ◽  
Frédéric Montel ◽  
Alain Nême ◽  
...  

This paper describes an on board measurement campaign held in Grande-Rivière, Gaspésie, Province of Québec, Canada, in October 2015, involving a 13-meter trawler equipped with a 50-square-meter kite. The aim of the campaign was to access the boat performance when the kite is used for auxiliary propulsion. To achieve this purpose, in addition to the kite control system, a set of sensors was installed. During the trials, runs with kite in static flight were done, with around 12 knots of true wind speed. The data post processing is presented in this paper, and allows an estimate of the lift coefficient and the lift to drag ratio of the kite and the tethers. The collected data are consistent with other experimental data published.


2020 ◽  
Vol 8 (3) ◽  
pp. 156 ◽  
Author(s):  
Saeed Jamei ◽  
Adi Maimun ◽  
Rasul Niazmand Bilandi ◽  
Nor Azwadi ◽  
Simone Mancini ◽  
...  

Flow structure is a crucial point for the conceptual design of Wing-in-Ground effect (WIG) crafts. In this study, pressure distributions around a compound wing, velocity and the turbulent intensity distribution in the wake area after trailing of the wing, have been investigated numerically. Computational simulations were completed regarding various angles of attack in-ground-effect. Two parts made up the compound wing: The first composed by one rectangular wing in the center, the second composed by a reverse taper wing, consisting of an anhedral angle at the side. A realizable k-ε turbulent model exhibited the flow field in the physical domain about the wing surface. The numerical results of the compound wing were validated using the data provided by wind tunnel tests. The flow structures around the compound wing were compared with that of a rectangular wing for different conditions. It was found that the pressure distribution on the rectangular wing was weaker than at the lower surface for the compound wing. However, the suction effect on the upper surface of the rectangular wing was higher. Also, the velocity defect and the turbulence level in the wake area was greater behind the compound wing.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Bai-gang Mi ◽  
Hao Zhan

Frequent flight conflicts will be observed as the number of aircrafts increases, and such conflicts will cause unprecedented challenges in flight safety; thus, the flight characteristics of small aircrafts under the wake flow of a large airliner should be thoroughly analyzed. Combined with the sliding mesh technique, a computational fluid dynamics (CFD) method is proposed in this paper to simulate three wake flow patterns, i.e., wingtip vortex, jet flow, and propeller slipstream, and then, the static and dynamic derivatives that represent the stability of the fly wing under the wake flow are identified by using the least squares method. The results demonstrate that both the steady and unsteady aerodynamics of the fly wing are affected by wake flows: wingtip vortices increase the lift-to-drag ratio and considerably change the dynamic damping; jet flow reduces both the static and dynamic damping; and propeller slipstream leads to slow variations in the dynamic damping and decreases in the lift-to-drag ratio.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Yilei He ◽  
Qiulin Qu ◽  
Ramesh K. Agarwal

This paper employs a multiobjective genetic algorithm (MOGA) to optimize the shape of a widely used wing in ground (WIG) aircraft airfoil NACA 4412 to improve its lift and drag characteristics, in particular to achieve two objectives, that is, to increase its lift and its lift to drag ratio. The commercial software ANSYS FLUENT is employed to calculate the flow field on an adaptive structured mesh generated by ANSYS ICEM software using the Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with a one equation Spalart-Allmaras (SA) turbulence model. The results show significant improvement in both the lift coefficient and lift to drag ratio of the optimized airfoil compared to the original NACA 4412 airfoil. It is demonstrated that the performance of a wing in ground (WIG) aircraft can be improved by using the optimized airfoil.


Author(s):  
Mohammadreza Radmanesh ◽  
Iman Samani ◽  
Alireza Amiriyoon ◽  
Mohammad-Reza Tavakoli

Reduced drag, increased lift and, consequently, increased vital ratio and lift-to-drag coefficients are crucial in almost all efficient micro air vehicles. Riblet geometries use a variety of air vehicles. Further investigation on micro air vehicles is, however, necessary for enhanced development. Rectangular riblets on a rectangular micro air vehicle are computationally investigated. In this study, the governing equation of fluid flow is solved numerically; the turbulent model around the NACA S5020 airfoil section is covered by riblets either on both sides or on the upper side of the wings. Results show a difference of behavior in drag reduction due to the angle of attack on the airfoil. When the lift-to-drag coefficient of an angle of attack is at its maximum, an improvement can be observed, where lift-to-drag ratio increases, and drag decreases. Results for the two-side riblets show an increase in the lift-to-drag ratio as well; although the lift-to-drag coefficient and the drag reduction of riblets on both sides were comparatively less than that for riblets on the upside.


Author(s):  
Saurabh Sharma ◽  
Shibu Clement

Ground effect is a phenomenon caused by the presence of a fixed boundary layer below a wing. This results in an effective increase in lift to drag ratio of the airfoil. The available literature on this phenomenon is very limited; also the types of airfoils used in traditional aircrafts are not suited for ground effect vehicles, so a computational study has been done comparing traditional airfoils (NACA series) with ground effect airfoil (DHMTU). In this paper, the aerodynamic characteristics of a NACA 6409, NACA 0012, DHMTU 12-35.3-10.2-80.12.2[1] section in ground effect were numerically studied and compared. In 2D simulation, the flow around each of the airfoils has been investigated for different turbulence models viz. Spalart Allmaras turbulence model and k-ε Realizable turbulence models. Lift coefficient, drag coefficient, pitching moment coefficient and lift to drag ratio of each airfoil was determined on several angles of attack from 0 to 10° (0°, 2°, 4°, 6°, 8°, 10°) and different ground clearances (h/c=0.2, 0.4, 0.6, 0.8, 1.0). The results of the CFD simulation indicate a reduction in drag coefficient and an increase in lift coefficient, thus an overall increment in lift to drag ratio of the airfoils, when flying in proximity to the ground. Also DHMTU airfoils have shown a greater consistency in Cm behavior with decreasing height-to-chord (h/c) ratio.


Sign in / Sign up

Export Citation Format

Share Document