EFFECT OF WET TROPICAL WEATHERING ON THE STRENGTH OF SANDSTONE

2015 ◽  
Vol 76 (2) ◽  
Author(s):  
Edy Tonnizam Mohamad ◽  
Maybelle Liang ◽  
Nurmunirah Mohd Akhair

 The influence of moisture content to the strength of wet tropically weathered sandstone of Jurong Formation found in Nusajaya, Johor was studied. The rock materials have been affected by weathering action; hence the alteration of its engineering properties is incontestable due to these effects. A total of 36 samples representing various weathering grades were collected from the field and tested at various moisture content by immersing them in water at different duration of time, ranging from 15, 30 and 60 minutes. Point load tests for the determination of the strength index Is(50) of the rock were then carried out. For weathered sandstone (Grade II to IV), the mean initial moisture content ranges from 0.15% to 11.00% respectively, while the initial mean strength index has maximum and minimum values of 7.76 MPa and 0.38 MPa. The results reveal that there is a significant relationship between the weathering grades, moisture absorption and strength. The moisture absorption is dependent on the amount of clay minerals present in the rock material, which indirectly affects the strength, as observed with the increment of weathering state. In conclusion, this study indicates that sandstone with higher moisture content and increase in weathering grade exhibits lower strength values. 

2018 ◽  
Vol 7 (4.35) ◽  
pp. 819
Author(s):  
R Roslan ◽  
RC Omar ◽  
I.N.Z. Baharuddin ◽  
Hairin Taha ◽  
M.M. Fared ◽  
...  

Segari - Ayer Tawar rock materials were generally characterized as slightly weathered (Grade II) to moderately weathered (Grade III).  Laboratory tests such as Brazilian tensile strength and point load strength index including direct shear strength were carried out using collected weathering sample from borehole to assess the rock strength. Hence, index testing was used to predict geological strength index, rock failure criterion from Hoek-Brown and deformation modulus mainly for the classification of rock mass engineering properties.  The relationship between the uniaxial compressive strength and geological strength index of rocks were used in proposing suitable methods for cutting the rock slope.


2013 ◽  
Vol 848 ◽  
pp. 108-111 ◽  
Author(s):  
Jin Kui Li ◽  
Fei Fei Li ◽  
Xian Ke Wei

In order to use different size of the rock in the site point load tests, select the same site at the scene of specimen do load test research. Through the statistical analysis of 9 groups of the point load strength index data, demonstrates the influence of the test specimen size and shape sample size and shape to rock point load test results, and draws the influence rule of the specimen height to the point load test. The research has the vital significance for underground engineering design and construction.


2021 ◽  
Vol 15 (1) ◽  
pp. 360-369
Author(s):  
Monther Abdel Hadi ◽  
Ibrahim Khliefat ◽  
Nafeth Abdelhadi ◽  
Nidhal Saada

Introduction: Jordan is awarded huge areas in the north and western part of the country in which brown and green clay is dominant. This research focuses on the problems and behaviour of the green clay only. The main problem of the green clay is its high swelling pressure which is the main cause of excessive settlement and wall cracks in buildings, especially during the wet season. Methods: This study aims to investigate the engineering properties and behaviour of the green clay deposits in the Amman area, which will serve as a guide for both geotechnical and structural engineers when preparing the foundation design. Results: Based on the consolidation test, the investigated green clay showed high swelling pressure of 3.11 kg/cm2, liquid limit (LL) of 73%, plasticity index (PI) of 40%, the shrinkage limit (SL) of 12%, and liquidity index (LI) of 0.125. The moisture content at saturation is 35.14%, while the natural moisture content is 28%, dry density is 1407 kg/m3, cohesion (C) is 0.20 kg/cm2 and unconfined compressive strength is 1.05 kg/cm2. The XRD results of the clay size fraction have confirmed the presence of the expansive clay mineral smectite as the essential clay mineral together with kaolinite. Results provide a general understanding of the behaviour and properties of the green clay, and the regression analysis showed good correlations between the liquid limit and initial moisture content with the compression index and also between the initial void ratios with the swelling index. Conclusion: Changes in the volume are due to the unsaturation level of clay when provided with initial water content.


2020 ◽  
Vol 17 (2) ◽  
pp. 1070-1078
Author(s):  
Mohd Firdaus Md Dan ◽  
Syahrul Aida Amaran ◽  
Aziman Madun ◽  
Ummu Aiman Idris ◽  
Mohd Khaidir Abu Talib ◽  
...  

Shale is significantly weaker and less durable than other types of rock and is easy to break when it is exposed to continuous wetting and drying activities. As a construction material, the durability strength index of weathered shale in Ayer Hitam, Johor, Malaysia is poorly investigated and not well understood. The purpose of this study is to investigate the effect of mechanical weathering on the durability strength index of Ayer Hitam weathered shale under several different conditions. Three hundred sixty samples of weathered shale which are classified as weathering grade II to IV were tested within the fifth cycles of the slake durability test under three different conditions namely: Natural weathering, dry, and saturated sample. The results showed that the weathered shale with the highest moisture content of 27.78% and the lowest strength index with 1% after the fifth cycle at week 8 was the weathering grade IV under saturated condition. It was also found that the reduction in the durability strength index was more than 90% with increased moisture content and weathering grades. In conclusion, the durability strength index of shale depends upon the number of cycles or weathering grade, duration of water immersion as well as moisture content.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Cheng Song ◽  
Ligong Yang ◽  
Wei Xia ◽  
Wendong Ji ◽  
Yuting Zhang

Expansive soil has the property of water swelling, which is related not only to the hydrophilic mineral composition of soil particles and the microstructure of soil, but also to the initial moisture content, dry density, and overburden condition of soil. Based on the typical expansive soil in a certain area, the samples were sampled and remodeled at the site. Extensive experimental tests were conducted to investigate the relationship between the hygroscopic expansion rate and the water content of the expansive soil under different initial moisture content, dry density, and free load. The results showed that, under the condition of natural initial water content and dry density, although the hygroscopic expansion rate of the medium expansive soil was nonlinear with the subsequent water content, in the range of large water content (within about 50%), the expansive soil swelled linearly. There was a linear relationship between the rate and the water content. With the increase of the initial water content, the hygroscopic expansion rate and expansion rate of the expansive soil decreased. With the increase of the dry density, the hygroscopic expansion rate and the expansion rate of the expansive soil increased. The water absorption performance did not decrease, and the soil continued to maintain the previous moisture absorption rate and expansion rate after the soil reached saturation, while after the water content reached 1.5∼2.0 times the saturated water content, the soil moisture absorption expansion rate gradually decreased until it finally stabilized. The slope k of the expansion rate increased with the initial dry density and decreased with the initial moisture content. As dry density was increased, the slope k was increased at an increased rate. Moreover, as the initial moisture content was decreased, the slope k was increased at an increased rate.


PCI Journal ◽  
1991 ◽  
Vol 36 (4) ◽  
pp. 66-73
Author(s):  
Alex Aswad George Burnley
Keyword(s):  

Author(s):  
L. Hübschen

AbstractThe present paper shows the detectable factors on which a sorption isotherm depends. Even if it is well-known that a sorption isotherm is most essentially conditioned by influences of the respective tobacco variety, other factors, such as temperature, initial moisture content, or fibre dimension, play a part as well. In general, a sorption isotherm constitutes a ''summation'' of such factors and, in the end, a combination of desorption and adsorption if the tobacco is dried or moistened from the average commercial moisture content. The tobacco hysteresis is experimentally investigated and discussed


Agrotek ◽  
2018 ◽  
Vol 2 (6) ◽  
Author(s):  
Wilson Palelingan Aman

<em>A research about cocoa beans drying used solar tunnel dryer with photovoltaic module driven have conducted in Manokwari. Solar tunnel dryer used in this research adapted from type Hohenheim with photovoltaic module and integrated air heat collector has been installed at the Department of Agricultural Technology, Papua State University Manokwari to dried cocoa beans. The objectives of this research were to design solar tunnel dryer and evaluate it�s performance in dryed cocoa beans. The result obtained was a new construction of solar tunnel dryer for cocoa beans with dimensions 6 m of length and 0,9 m of wide. The dryer completed with photovoltaic module to drive the blowers of hot drying air. �Performance test of the dryer showed that drying of 10 kg of cocoa beans with initial moisture content about 70% wet basis needed 13 hours of drying time to achieved final moisture content about 7,17% wet basis. The drying time achieved was faster compared than traditional solar drying that needed 20 hours of drying time. The maximum temperature achieved in drying chamber was 60 <sup>o</sup>C.</em>


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1590 ◽  
Author(s):  
Angelo Del Giudice ◽  
Andrea Acampora ◽  
Enrico Santangelo ◽  
Luigi Pari ◽  
Simone Bergonzoli ◽  
...  

Drying is a critical point for the exploitation of biomass for energy production. High moisture content negatively affects the efficiency of power generation in combustion and gasification systems. Different types of dryers are available however; it is known that rotary dryers have low cost of maintenance and consume 15% and 30% less in terms of specific energy. The study analyzed the drying process of woody residues using a new prototype of mobile rotary dryer cocurrent flow. Woodchip of poplar (Populus spp.), black locust (Robinia pseudoacacia L.), and grapevine (Vitis vinifera L.) pruning were dried in a rotary drier. The drying cycle lasted 8 h for poplar, 6 h for black locust, and 6 h for pruning of grapevine. The initial biomass had a moisture content of around 50% for the poplar and around 30% for grapevine and black locust. The study showed that some characteristics of the biomass (e.g., initial moisture content, particle size distribution, bulk density) influence the technical parameters (i.e., airflow temperature, rate, and speed) of the drying process and, hence, the energy demand. At the end of the drying process, 17% of water was removed for poplar wood chips and 31% for grapevine and black locust wood chips. To achieve this, result the three-biomass required 1.61 (poplar), 0.86 (grapevine), and 1.12 MJ kgdry solids−1 (black locust), with an efficiency of thermal drying (η) respectively of 37%, 12%, and 27%. In the future, the results obtained suggest an increase in the efficiency of the thermal insulation of the mobile dryer, and the application of the mobile dryer in a small farm, for the recovery of exhaust gases from thermal power plants.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Monika Aniszewska ◽  
Krzysztof Słowiński ◽  
Ewa Tulska ◽  
Witold Zychowicz

AbstractThe paper proposes the use of microwave irradiation to lower the initial moisture content of wood chips. The study involved willow and fir chips fractionated by means of a sieve separator and unfractionated ash chips. The wood chips were exposed to a constant microwave power of 800 W for 30 s, 60 s, 120 s and 180 s. The chips were weighed before and after irradiation to measure loss of moisture. It was found that the decline in moisture content increased with wood chip size for a given irradiation time and microwave power. The initial moisture content of wood chips was not found to significantly affect loss of moisture as the drying rates of wood chips with higher and lower moisture content exposed to microwaves were not statistically different. The results showed that irradiation intensity increased with the time of exposure to microwaves and unit radiant energy per unit of evaporated moisture decreased with increasing wood chip size in the 3.15–31.50 mm range.


Sign in / Sign up

Export Citation Format

Share Document