scholarly journals Characterization of the High Swelling Green Clay in the Vicinity of Amman Area

2021 ◽  
Vol 15 (1) ◽  
pp. 360-369
Author(s):  
Monther Abdel Hadi ◽  
Ibrahim Khliefat ◽  
Nafeth Abdelhadi ◽  
Nidhal Saada

Introduction: Jordan is awarded huge areas in the north and western part of the country in which brown and green clay is dominant. This research focuses on the problems and behaviour of the green clay only. The main problem of the green clay is its high swelling pressure which is the main cause of excessive settlement and wall cracks in buildings, especially during the wet season. Methods: This study aims to investigate the engineering properties and behaviour of the green clay deposits in the Amman area, which will serve as a guide for both geotechnical and structural engineers when preparing the foundation design. Results: Based on the consolidation test, the investigated green clay showed high swelling pressure of 3.11 kg/cm2, liquid limit (LL) of 73%, plasticity index (PI) of 40%, the shrinkage limit (SL) of 12%, and liquidity index (LI) of 0.125. The moisture content at saturation is 35.14%, while the natural moisture content is 28%, dry density is 1407 kg/m3, cohesion (C) is 0.20 kg/cm2 and unconfined compressive strength is 1.05 kg/cm2. The XRD results of the clay size fraction have confirmed the presence of the expansive clay mineral smectite as the essential clay mineral together with kaolinite. Results provide a general understanding of the behaviour and properties of the green clay, and the regression analysis showed good correlations between the liquid limit and initial moisture content with the compression index and also between the initial void ratios with the swelling index. Conclusion: Changes in the volume are due to the unsaturation level of clay when provided with initial water content.

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Changxi Huang ◽  
Xinghua Wang ◽  
Hao Zhou ◽  
Yan Liang

Expansive soil has been studied for eighty decades because it is prone to cause geotechnical engineering accidents. The results of the moisture content effects on the expansive pressure were not consistent in the literatures. In this paper, swelling deformation and pressure tests were conducted to clarify the effects of the initial water content on the swelling properties. The relation of expansive stress and initial moisture content was accurately described with a Gaussian distribution, unlike in the previously published studies. These results could be explained by the change in the microstructure with diverse moisture contents. In addition, dry density and vertical stress influences on expansive properties were analysed. With an increase in the vertical loading, the soil samples first expanded, and then the samples with a lower dry density collapsed; however, the samples with a higher dry density did not collapse, even under a considerable vertical loading. Furthermore, the relation between stress path and expansive pressure was examined. It was observed that the swelling pressures obtained from the constant volume tests were greater than the results from the swell under load tests. The relationship between the swelling pressure and swelling strain was also analysed.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Cheng Song ◽  
Ligong Yang ◽  
Wei Xia ◽  
Wendong Ji ◽  
Yuting Zhang

Expansive soil has the property of water swelling, which is related not only to the hydrophilic mineral composition of soil particles and the microstructure of soil, but also to the initial moisture content, dry density, and overburden condition of soil. Based on the typical expansive soil in a certain area, the samples were sampled and remodeled at the site. Extensive experimental tests were conducted to investigate the relationship between the hygroscopic expansion rate and the water content of the expansive soil under different initial moisture content, dry density, and free load. The results showed that, under the condition of natural initial water content and dry density, although the hygroscopic expansion rate of the medium expansive soil was nonlinear with the subsequent water content, in the range of large water content (within about 50%), the expansive soil swelled linearly. There was a linear relationship between the rate and the water content. With the increase of the initial water content, the hygroscopic expansion rate and expansion rate of the expansive soil decreased. With the increase of the dry density, the hygroscopic expansion rate and the expansion rate of the expansive soil increased. The water absorption performance did not decrease, and the soil continued to maintain the previous moisture absorption rate and expansion rate after the soil reached saturation, while after the water content reached 1.5∼2.0 times the saturated water content, the soil moisture absorption expansion rate gradually decreased until it finally stabilized. The slope k of the expansion rate increased with the initial dry density and decreased with the initial moisture content. As dry density was increased, the slope k was increased at an increased rate. Moreover, as the initial moisture content was decreased, the slope k was increased at an increased rate.


2015 ◽  
Vol 76 (2) ◽  
Author(s):  
Edy Tonnizam Mohamad ◽  
Maybelle Liang ◽  
Nurmunirah Mohd Akhair

 The influence of moisture content to the strength of wet tropically weathered sandstone of Jurong Formation found in Nusajaya, Johor was studied. The rock materials have been affected by weathering action; hence the alteration of its engineering properties is incontestable due to these effects. A total of 36 samples representing various weathering grades were collected from the field and tested at various moisture content by immersing them in water at different duration of time, ranging from 15, 30 and 60 minutes. Point load tests for the determination of the strength index Is(50) of the rock were then carried out. For weathered sandstone (Grade II to IV), the mean initial moisture content ranges from 0.15% to 11.00% respectively, while the initial mean strength index has maximum and minimum values of 7.76 MPa and 0.38 MPa. The results reveal that there is a significant relationship between the weathering grades, moisture absorption and strength. The moisture absorption is dependent on the amount of clay minerals present in the rock material, which indirectly affects the strength, as observed with the increment of weathering state. In conclusion, this study indicates that sandstone with higher moisture content and increase in weathering grade exhibits lower strength values. 


The aim of the present study is to determine the physical and geotechnical characteristics of municipal solid waste (MSW) from an open dump site located in Una town, Himachal Pradesh (India) for the analysis of settlement and structural stability of landfill. Degraded waste was tested for different time intervals ranging from 6 months to 6 years. The physical characterization and the geotechnical tests were performed to determine the composition and the engineering properties of MSW respectively. The presence of moisture content in the fresh waste was 49.5±1.05% but for the degraded (or old) waste it varied between 39.8 to 51.6%. The specific gravity of fresh and old waste varied between 1.83±0.05 and 1.85 for 6 months old waste and 2.28 for 5-6 years old degraded waste respectively. The maximum dry density (MDD) was observed to be 4.28 kN/m2 for fresh waste at the optimum moisture content (OMC) of 78.1% and 4.47 kN/m3 for 6 months old waste and 6.25 kN/m3 for the degraded waste of 5-6 years at 80.2, 85.4% of OMC respectively. The hydraulic conductivity (k) of MSW was found to be decreasing with the degradation of MSW and the overburden pressure whereas the shear strength increased along with the degradation of the waste. The cohesion (c) and angle of internal friction (φ) increased respectively from 31.2 kPa(fresh) to 38 kPa(degraded) and 14° to 22° with the increase in waste degradation. The compression ratio of fresh waste was within the ranges of 0.19-0.29 and for degraded MSW it varied between 0.12 for 6 months old waste and 0.17 for 5-6 years old degraded waste respectively.


1970 ◽  
Vol 7 (1) ◽  
pp. 79-91 ◽  
Author(s):  
A. Yevnin ◽  
D. Zaslavsky

Volume change after saturation was determined on specimens of a statically compacted clay soil. It was found that density after swelling increases linearly with increasing initial density, initial moisture content, and increasing logarithm of applied loading pressure. An empirical equation with five coefficients and a constant, found with the aid of a computer, represents the results with a coefficient of correlation close to 1. An equation for the swelling pressure was also obtained from this equation. Results of specimens which consolidated did not fit the lines obtained for swelling. The relationships obtained were explained by the influence of particle reorientation and moisture content on swelling tendency.


2021 ◽  
Vol 293 ◽  
pp. 01032
Author(s):  
Liu Hongcheng ◽  
Lu Changwei ◽  
Wang Yinxia ◽  
Song Yi ◽  
Guan Xiangfeng ◽  
...  

To study the collapsibility of typical loess and its influencing factors in different areas, the samples in Jingyang, Lanzhou and Yili were studied. The correlation between initial moisture content, dry density, composition of particle size, structural parameters and the coefficient of subsidence is analyzed. The results show that: the coefficient of collapsibility is negatively correlated with the initial moisture content and dry density. In the experiments of multiple groups, the collapsibility coefficient has a certain correlation with the clay content, but not a uniform correlation with the particle content. The collapse coefficient is approximately positively correlated with the composite structure potential.


2019 ◽  
Vol 3 (2) ◽  
pp. 1-7
Author(s):  
Syahdi Syahdi ◽  
Muhammad Suhaimi

Tanah merupakan salah satu dari sekian banyak material yang bervariasi (heterogen) antara satu lokasi dengan lokasi yang lain., maka dalam penelitian ini melakukan penambahan material pasir putih yang kemudian dicampurkan dengan tanah asli yang berasal dari desa Bangkuang Kecapamatan Karau Kuala Kabupaten Barito selatan. Kegiatan penelitian dilakukan di laboratorium Geoteknik dan Transportasi Politeknik Negeri Banjarmasin meliputi beberapa metode pungujian dilakukan sesuai dengan standar penelitian yaitu: SNI 03-1965-2008, SNI 03-1964-2008, SNI 03-1967-2008, SNI 03-1965-2008,SNI 03-1743-2008 SNI 03-1738-2011, dan SNI 2828:2011.  Hasil penelitian, dengan penambahan pasir putih sangat berpengaruh terhadap perbaikan sifat – sifat tanah yang akan digunakan untuk bahan stabilisasi subgredre,   maka didapat nilai sifat-sifat tanah diberi bahan pasir putih (0%) meliputi; kadar air (W) 23,87%, berat jenis (Gs) 2,59, batas cair (LL) 33,9%, batas plastis (PL) 20,11%, plastisitas indeks (PI) 13,79%, kadar air optimum (OMC) 18,6%, kepadatan kering maksimum (dMax) 1,61 Gr/Cm3 dan CBR desain 5%. Nilai sifat-sifat tanah diberi bahan tambah pasir putih. Nilai sifat-sifat tanah diberi bahan tambah pasir putih (15%) meliputi; berat jenis gabungan (Gs) 2,62, batas cair (LL) 29,6%, batas plastis (PL) 19,52%, plastisitas indeks (PI) 10,08%, kadar air optimum (Omc) 81,5%, kepadatan kering maksimum (dMax)) 1,54 Gr/Cm3 dan CBR desain 6,1%, berat isi kering (d) 1,538 gr/cm³. Abstract Land is one of the many varied material (heterogeneous) between one site and another location., then in this research performs addition material of white sand is then blended with the native soil that comes from the village of Karau Kuala Kecapamatan District Bangkuang Barito South. Research activities carried out in the laboratory of Geotechnical and transportation State Polytechnic Banjarmasin includes several methods of pungujian conducted in accordance with the standards of research, namely: in accordance with the SNI 03-1965-2008, SNI 03-1964-2008, SNI 03-1967-2008, SNI 03-1965-2008, SNI 03-1743-2008, SNI 03-1738-2011, and SNI 2828:2011. Results of the study, with the addition of white sand is very influential towards the improvement of the nature – nature of the land to be used for subgredre stabilization materials, then obtained the value soil properties are given materials white sand (0%) include; moisture content (W) 23.87%, heavy types (Gs) 2.59, liquid limit (LL) 33.9%, limits plastis (PL) 20.11%, plasticity index (PI) 13.79%, optimum moisture content (OMC) 18.6%, maximum dry density (/dMax) 1.61 Gr/Cm3 and CBR design 5%. The value soil properties are given the added ingredient of white sand. The value soil properties are given the added ingredient of white sand (15%) include; the weight of the combined type (Gs) 2.62, liquid limit (LL) 29.6%, limits plastis (PL) 19.52%, plasticity index (PI) 10.08%, optimum moisture content (Omc) 81.5%, maximum dry density (/dMax)) 1.54 Gr/Cm3 and CBR design 6.1%, weight dry (/d) 1.538 gr/cm ³.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
B. Wang ◽  
J. H. Gao ◽  
Y. Q. Wang ◽  
X. J. Quan ◽  
Y. W. Gong ◽  
...  

The direct shear tests of different dry density and moisture content samples at different temperatures of the frozen soil in the Qinghai-Tibet Railway embankment between Tanggula South and Anduo section were carried out to analyze the influence rules of each experimental factor on the mechanical properties of frozen soil during the freeze-thaw process. The results show the following. (1) When the frozen soil temperature is below 0°C and continues to drop during the freezing and thawing process, each sample shows the law of a significant increase in cohesion and a slight decrease in the internal friction angle. In the meantime, the cohesion obtained during the thawing process of the sample at the same temperature point is higher than that obtained during the freezing process. In contrast, the internal friction angles exhibit an opposite law, where the internal friction angle during the melting process is lower than the internal friction angle during the freezing process. After freezing-thawing action, it deserves to be mentioned that the cohesion increases slightly while the internal friction angles present a slight decrease trend compared to the initial state. (2) With the decrease in temperature and the gradual increase in cohesion, the temperature curve can be divided into a fast-growing section from 0 to −2°C, a slow-growing section from −2 to −8°C, and a second fast-growing section from −8 to −10°C owing to the combined effect of the pressure-thawing action and ice-water phase change. In addition, the rate of decrease in the internal friction angle also shows a similar pattern. (3) The cohesion and the internal friction angle of samples both tend to increase first and then decrease with the rise of the initial moisture content, and the critical initial moisture content is near the optimal moisture content of 15%. (4) Both the cohesion and the internal friction angle of the samples increase with dry density growth. The growth rate of cohesion will gradually increase as the temperature decreases. Moreover, the growth rate of cohesion of low dry density samples is more susceptible to temperature, while the internal friction angle growth rate is not affected by temperature.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shuan Guo ◽  
Zheng Lu ◽  
Guokun Liu ◽  
Baoli Zhuang ◽  
Yongfeng Fan ◽  
...  

The freeze-thaw cycles cause deterioration in mechanical properties of levee soil and further endanger the pavement structure on the embankment. This study attempts to comprehensively understand the mechanical response of pavement after freeze-thaw cycles. In this paper, the freeze-thaw cycles test under an open system was carried out, and then the triaxial compression test was conducted. Based on the test results, the effects of freeze-thaw cycles, temperature range, initial dry density, and initial moisture content of embankment soil on the mechanical response of road structure after freeze-thaw were calculated and analyzed. Finally, the stability of the slope of the levee was evaluated. The results show that the number of freeze-thaw cycles has the most significant impact on the mechanical response of pavement, the stress and strain of the structural layers vary in different ranges, and the pavement deflection increases by 5 times after 7 freeze-thaw cycles. However, the initial dry density and initial moisture content of the soil have little influence on the pavement structure, and the temperature range will exert an influence when it exceeds a certain threshold.


2018 ◽  
Vol 38 (2) ◽  
pp. 167
Author(s):  
Lince Mukkun ◽  
Herianus J.D. Lalel ◽  
Yuliana Tandirubak

Maize is one of the important staple foods for people in Timor, East Nusa Tenggara Province, Indonesia. Subsistent farmers store the maize for their own consumption until the next harvest season, for seed and feed.  However, high initial water content of the kernel due to improper drying prior storage initiate serious damage and losses during the maize storage.  High water content promotes the growth of fungi and insects, and increase respiration rate, resulting in rapid deterioration of maize. The purpose of this study was to determine the initial moisture content that might minimize damage and losses of maize in the farmers’ storage, and to study the effects of some plant materials that are used to smoke corns before storage. The experiment was initiated by sun-drying the harvested corncobs for 0, 2, 4, 6, 8, and 10 days (6 hours a day). This experiment was designed using Completely Randomized Design with 6 treatments and 3 replications. Dried corncobs were stored in the farmer’s storage for 4 months. The effects of maize kernels’ initial water content on the development of water content in kernels; the percentage of damaged kernels; and the species of pathogen and insects were investigated during storage with 2-week intervals.  The results demonstrated that drying the corncobs prior storage for 10 days, resulting in 12.96% of water content, significantly decreased the percentage of seed damage to 6.5%, as compared to without drying process which resulted  in 63%.  Aspergillus flavus, Fusarium sp., and Penicillium sp were found to be the main pathogen during storage.  There are no insect pests found during the storage. 


Sign in / Sign up

Export Citation Format

Share Document