MEASUREMENT OF FLOW IN CIRCULAR ELASTIC TUBE

2015 ◽  
Vol 76 (10) ◽  
Author(s):  
Muhamad Mazwan Mahat ◽  
Salmiah Kasolang ◽  
Izdihar Tharazi ◽  
R. Nazirul Izzati

 Impedance pump is a simple valveless pumping mechanism which typically used in viscosity measurement device to assist pumping of fluid. It is typically connected to an elastic tube in a circulatory system of a more rigid tube. In conventional mechanical circulatory support systems using rotary pump, the pumping mechanism was exposed to turbulent stresses. Hence,  this may cause damage to blood cells flowing through the impeller. There has been initial work on finding alternative solution using the impedance pump system. However,  substantial findings are not yet sufficient to fully understand the mechanism. The purpose of this research is to extend the investigation on impedance pump by specifically looking at the effect of structural parameters on the elastic tube and the flow behaviour. In this study, a closed loop impedance pump system was set up to demonstrate blood flow circulatory system where the mixture of glycerine and water was used as the working fluid. Three variables were regulated namely voltage, tube thickness, and tube length was used in order to get the flowrate of the working fluid. Based on the results, it was found that  tube thickness of 1 mm and a length of 200 mm had produced the highest flowrate in the region 75 ml/min.

2013 ◽  
Vol 393 ◽  
pp. 747-752 ◽  
Author(s):  
M. Mazwan Mahat ◽  
M. Arif Sulaiman ◽  
Chee Sheng Ow ◽  
Rosnadiah Bahsan ◽  
N. Merlisa Ali ◽  
...  

This paper summarises a study which aims to develop and analyze the performance of the valveless impedance pump. Mechanism of valveless impedance pump is to apply acoustic impedance mismatch in order to drive the flow and also consists of a flexible connection at the ends to the more rigid sections. Characteristics of liquid velocity and pressure at the pump base valveless impedance at various supply voltage and different frequencies have been discovered through experimentation. Secondly, this research also aims to discuss the effect volume flow rate (millitres / min) in the elastic tube impedance based on different parameters of the pump pinch. The variation of pinch location and pinch width are also available through the results of this study. This study begins with the design set up to use the software and followed by installing all equipment used for the experiments. Then, this study continues to get results and make an analysis of the impedance pump by experimentation. Results found that all the parameters used in this experiment affect the flow rate in the impedance pump. Additional experiments on the effect of the thickness of the flexible tube on the flow rate gave lower values when the flexible tube is relatively thicker.


2018 ◽  
Vol 7 (3.11) ◽  
pp. 43 ◽  
Author(s):  
Azli Abd Razak ◽  
Nazirul Izzati Rosli ◽  
Mohd Faizal Mohamad

This present study focused on the performance of net flow rate inside closed loop mechanical circulatory system with single and double pinching impedance pumps which generates a unidirectional flow of fluid around closed loop of soft viscoelastic tubing. The experimental setup consisted of viscoelastic tubing connected between two ends of rigid tube which was compressed rhythmically or squeezed asymmetrically at various frequencies by motorized pinching. Hence, net flow of fluid around the tubing can occur without valves. Experiment was done on two different fluid, namely Newtonian and Non-Newtonian. Result showed that the flow rate inside closed loop system for non-Newtonian fluid and Newtonian fluid were in good agreement with each other. Single pinching showed a lower flow rate compared to double pinching at higher frequency. The results could be used as a model for a new Mechanical Circulatory Support System used by cardiac patients. Factors influencing the performance of valveless impedance pump was also explained.  


2014 ◽  
Vol 607 ◽  
pp. 561-564
Author(s):  
M. Mazwan Mahat ◽  
Izdihar Tharazi ◽  
Liyana Roslan ◽  
Mohd Fakrul Jasni

This research work aims to identify the characteristic of flow in valveless impedance pump which uses acoustic impedance mismatch to drive flow. The experimental setup mainly focuses on the elastic section connected between two ends of rigid tube. Fluid flow rate resulting from the pumping mechanism were measured at different supply voltage. Meanwhile, the volume flow rate (ml / min) in the elastic tube section were also determined based upon different pinch location and width using water as a working fluid. In order to achieve these parameters quantification, the experimental test rig was designed and the set of equipments were successfully assembled. Then, the measured parameters resulting from the experiment of the impedance pump are presented in significant findings of four curves plots. It is found that the maximum flow rate occurred at voltage setting equal to 4 V. Significantly, results obtained could beneficial future design as a mimics model for novel Ventricular Assist Device use in cardiac patient as well as further explanation about the factor that influence the characteristic of valveless impedance pump.


1997 ◽  
Vol 20 (1) ◽  
pp. 37-42 ◽  
Author(s):  
K. Mabuchi ◽  
T. Chinzei ◽  
Y. Abe ◽  
K. Imanishi ◽  
T. Isoyama ◽  
...  

An electrochemical sensor system to allow real-time measurement and feedback of catecholamine concentrations was developed for use in the control of artificial hearts. Electrochemical analyses were carried out using a carbon fiber working electrode, an Ag-AgCI reference electrode, and a potentiostat. The operating parameters of the pneumatically-driven artificial heart system were altered in accordance with the algorithm for changes in the catecholamine concentration. The minimum detectable concentrations of both adrenaline and noradrenaline in a mock circulatory system using a phosphate-buffered solution were approximately 1-2 ng/ml (10-8 mol/L). An artificial heart control system utilizing this set-up performed satisfactorily without delay, although sensor sensitivity decreased when placed in goat plasma instead of a phosphate-buffered solution, due to the adsorption of various substances such as plasma proteins onto the electrodes. This study demonstrated the future feasibility of a feedback control system for artificial hearts using catecholamine concentrations.


Author(s):  
Tina Unglaube ◽  
Hsiao-Wei D. Chiang

In recent years closed loop supercritical carbon dioxide Brayton cycles have drawn the attention of many researchers as they are characterized by a higher theoretic efficiency and smaller turbomachinery size compared to the conventional steam Rankine cycle for power generation. Currently, first prototypes of this emerging technology are under development and thus small scale sCO2 turbomachinery needs to be developed. However, the design of sCO2 turbines faces several new challenges, such as the very high rotational speed and the high power density. Thus, the eligibility of well-established radial inflow gas turbine design principles has to be reviewed regarding their suitability for sCO2 turbines. Therefore, this work reviews different suggestion for optimum velocity ratios for gas turbines and aims to re-establish it for sCO2 turbines. A mean line design procedure is developed to obtain the geometric dimensions for small scale sCO2 radial inflow turbines. By varying the specific speed and the velocity ratio, different turbine configurations are set up. They are compared numerically by means of CFD analysis to conclude on optimum design parameters with regard to maximum total-to-static efficiency. Six sets of simulations with different specific speeds between 0.15 and 0.52 are set up. Higher specific speeds could not be analyzed, as they require very high rotational speeds (more than 140k RPM) for small scale sCO2 turbines (up to 150kWe). For each set of simulations, the velocity ratio that effectuates maximum efficiency is identified and compared to the optimum parameters recommended for radial inflow turbines using subcritical air as the working fluid. It is found that the values for optimum velocity ratios suggested by Rohlik (1968) are rather far away from the optimum values indicated by the conducted simulations. However, the optimum values suggested by Aungier (2005), although also established for subcritical gas turbines, show an approximate agreement with the simulation results for sCO2 turbines. Though, this agreement should be studied for a wider range of specific speeds and a finer resolution of velocity ratios. Furthermore, for high specific speeds in combination with high velocity ratios, the pressure drop of the designed turbines is too high, so that the outlet pressure is beyond the critical point. For low specific speeds in combination with low velocity ratios, the power output of the designed turbines becomes very small. Geometrically, turbines with low specific speeds and high velocity ratios are characterized by very small blade heights, turbines with high specific speeds and small velocity ratios by very small diameters.


2019 ◽  
Vol 31 (10) ◽  
pp. 101905 ◽  
Author(s):  
Samsun Nahar ◽  
Bipro N. Dubey ◽  
Erich J. Windhab

2013 ◽  
Vol 17 (4) ◽  
pp. 1079-1092 ◽  
Author(s):  
Mahyar Kargaran ◽  
A. Arabkoohsar ◽  
S.J. Hagighat-Hosini ◽  
V. Farzaneh-Kord ◽  
Mahmood Farzaneh-Gord

Vortex tube is a simple device without a moving part which is capable of separating hot and cold gas streams from a higher pressure inlet gas stream. The mechanism of energy separation has been investigated by several scientists and second law approach has emerged as an important tool for optimizing the vortex tube performance. Here, a thermodynamic model has been used to investigate vortex tube energy separation. Further, a method has been proposed for optimizing the vortex tube based on the rate of entropy generation obtained from experiments. Also, an experimental study has been carried out to investigate the effects of the hot tube length and cold orifice diameter on entropy generation within a vortex tube with natural gas as working fluid. A comparison has been made between air and natural gas as working fluids. The results show that the longest tube generates lowest entropy for NG. For air, it is middle tube which generates lowest entropy. Integration of entropy generation for all available cold mass fractions unveiled that an optimized value for hot tube length and cold orifice diameter is exist.


2014 ◽  
Vol 660 ◽  
pp. 932-936
Author(s):  
M. Mazwan Mahat ◽  
R.N. Izzati ◽  
Ilya Izyan Shahrul Azhar ◽  
Izdihar Tharazi

This paper aims to analyse the performance of impedance pump that uses energy mismatch to drive fluid flow. The experimental setup mainly focus to establish the relationship between the fluids flow rates in elastic tube section connected between two ends of solid tube and pinch mechanism location as well as fluid viscosity. Measurement of fluid flow rate or representation of its velocities resulting from the pumping mechanism is measured using two different supply voltage and constant pincher width. These measured parameters resulting from the pinch mechanism of the elastic tube section were varied at different pinch location along itsx-axis direction; divided into two main cases namely (1) 2 V and (2) 3 V at 40 mm to 140 mm pinch location. From the voltage variation, it is found that the maximum flow rate given by voltage 3.0 V at pinch location 40 mm while for the effect of viscosity, the highest flow rate is 93 ml/min. The profiles obtained revealed the characteristic of valve less pump to be the new model of new Ventricular Assist Device use in cardiac patient as well as further explanation about the factor that influence the characteristic of elastic tube.


Author(s):  
Seongil Jang ◽  
Joon Ahn ◽  
Si Hyung Lim

Recent years have witnessed a growing concern over saving energy because of global warming issues and energy price hikes caused by increased oil prices. The need to improve energy efficiency to reduce energy consumption has been raised. Refrigeration systems are also expected to have their energy efficiency improved. A refrigeration system’s the compressor uses lubricating oil. Lubricating oil, along with refrigerant, circulates in a refrigeration system. During this process, the pressure drop increases, and the heat transfer coefficient decreases. Moreover, insufficient lubricant may incur a decrease in performance and damage to a compressor. Therefore, an oil separator is used to separate the lubricant and return it to the compressor. Since an oil separator causes an additional pressure drop, energy consumption should be decreased by increasing the oil separator’s separation efficiency and decreasing the pressure drop. The recent increase in development of large-scale buildings such as skyscrapers and large supermarkets has also increased the demand for large refrigeration machines. At the same time, refrigeration piping is becoming longer, and refrigerant must circulate up to the highest points. A high-pressure head and long piping configuration inevitably increase the quantity of lubricant left on the pipe wall, which in turn increases the loss of lubricants. The increased length and fall height for lubricants to circulate with refrigerant increase the related energy loss. In order to use a compressor in a high-head long-piping refrigeration system, the separation efficiency of the oil separator must be improved. Doing so will also reduce energy losses. Even with an improved separation efficiency, however, an increased pressure drop means additional energy losses. Thus, an oil separator with high separation efficiency and low pressure drop should be designed. So using the Numerical analysis, designed a new oil separator. A series of numerical simulation has been carried out to study peformance of a cyclone type oil separator, which is designed for the compressor of a refrigeration system. Working fluid is R22, which is a typical refrigerant, and mineral oil droplet is supplied. Depending on the outlet tube length, separation efficiency varies from 98.74 to 99.25%. Considering both of the separation efficiency, outlet tube length of the separator has been designed as 158 mm and oil separator length is 310mm.


Sign in / Sign up

Export Citation Format

Share Document