STAND-ALONE WATER TREATMENT: PERFORMANCE OF ELECTROSPUN NANOFIBERS

2016 ◽  
Vol 78 (12) ◽  
Author(s):  
A. Mataram ◽  
A. F. Ismail ◽  
E. Yuliwati ◽  
T. Matsuura ◽  
S. Rizal ◽  
...  

The aim of this study was to evaluate the use of nanofiber microfiltration membranes, spun by an innovative electrospinning technique, in water filtration applications. This study bridges between developments in electrospinning techniques for the production of flat sheet membranes and the application of these membranes in water filtration. The functionalized or non-functionalized for the removal of pathogens was investigated, in term of chemical oxygen demand, total suspend solid and ammonium in the waste water. Physical properties such as clean water permeability (CWP) and strength were also examined. The results showed a very good removal of TSS (range 94.83-97.34%), COD (89.32-95.27%) and NH3­-N (64.48-72.87%). These test showed that the electrospun membranes can be used for water filtration applications. 

2015 ◽  
Vol 77 (1) ◽  
Author(s):  
A. Mataram ◽  
A. F. Ismail ◽  
E. Yuliwati ◽  
T. Matsuura ◽  
A. Zamheri ◽  
...  

The aim of this study was to evaluate the use of nanofiber microfiltration membranes, spun by an innovative electrospinning technique, in water filtration applications. This study bridges between developments in electrospinning techniques for the production of flat sheet membranes and the application of these membranes in water filtration. The functionalized or non-functionalized for the removal of pathogens was investigated, in term of culture mechanism of bacteria spot in the waste water. Physical properties such as clean water permeability (CWP) and strength were also examined. The test showed that the electrospun membranes can be used for water filtration applications.


2021 ◽  
pp. 152808372110075
Author(s):  
Fabio Salvatore Palumbo ◽  
Salvatore Federico ◽  
Giovanna Pitarresi ◽  
Calogero Fiorica ◽  
Roberto Scaffaro ◽  
...  

Electrospun nanofibers based on polysaccharides represent a consolidated approach in Tissue Engineering and Regenerative Medicine (TERM) and nanomedicine as a drug delivery system (DDS). In this work, two chemical derivatives of a low molecular weight gellan gum (96.7 kDa) with aliphatic pendant tails were processed by electrospinning technique into non-woven nanofibrous mats. In order to generate spinnable blends, it was necessary to associate poly vinyl alcohol (PVA). The relationships between the physicochemical properties and the processability via electrospinning technique of gellan gum alkyl derivatives (GG-C8 and GG-C12 having a degree of alkyl chain derivatization of 17 mol % and 18 mol %, respectively) were investigated. The deposition of nanometric fibers (212.4 nm ± 60.0) was achieved by using the blend GG-C8/PVA spinned at 5% w/v in water. The use of a binary solvent composed of water and ethanol in a volumetric ratio 95:5 improved further spinnability obtaining similar nanofiber diameters (218.0 nm ± 96.0). The rheological analysis has allowed to highlight the role of the alkyl portion (C8 and C12) on the spinnability of the blended polymers.


2017 ◽  
Author(s):  
Tien Zubaidah ◽  
Nieke Karnaningroem

The surface river water quality in Banjarmasin city tends to decline constantly as the result of direct and indirect waste disposal from various human activities along the river body. This study aimed to determine the vulnerability points against pollution in the rivers of Banjarmasin using clustering techniques with K-means algorithm. The parameters observed include Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Suspend Solid (TSS) and Dissolved Oxygen (DO). The data were collected at eight water monitoring stations on various rivers in Banjarmasin city. With the K-means method, four water quality status were clustered. The result showed that 6 stations observed during the period April to October 2016 were categorized into the heavy polluted cluster with major pollution point of sources came from the domestic and industrial activities.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jin Yeong Song ◽  
Hyun Il Ryu ◽  
Jeong Myeong Lee ◽  
Seong Hwan Bae ◽  
Jae Woo Lee ◽  
...  

AbstractElectrospinning is a common and versatile process to produce nanofibers and deposit them on a collector as a two-dimensional nanofiber mat or a three-dimensional (3D) macroscopic arrangement. However, 3D electroconductive collectors with complex geometries, including protruded, curved, and recessed regions, generally caused hampering of a conformal deposition and incomplete covering of electrospun nanofibers. In this study, we suggested a conformal fabrication of an electrospun nanofiber mat on a 3D ear cartilage-shaped hydrogel collector based on hydrogel-assisted electrospinning. To relieve the influence of the complex geometries, we flattened the protruded parts of the 3D ear cartilage-shaped hydrogel collector by exploiting the flexibility of the hydrogel. We found that the suggested fabrication technique could significantly decrease an unevenly focused electric field, caused by the complex geometries of the 3D collector, by alleviating the standard deviation by more than 70% through numerical simulation. Furthermore, it was experimentally confirmed that an electrospun nanofiber mat conformally covered the flattened hydrogel collector with a uniform thickness, which was not achieved with the original hydrogel collector. Given that this study established the conformal electrospinning technique on 3D electroconductive collectors, it will contribute to various studies related to electrospinning, including tissue engineering, drug/cell delivery, environmental filter, and clothing.


2012 ◽  
Vol 7 (1) ◽  
Author(s):  
S. S. Fatima ◽  
S. Jamal Khan

In this study, the performance of wastewater treatment plant located at sector I-9 Islamabad, Pakistan, was evaluated. This full scale domestic wastewater treatment plant is based on conventional activated sludge process. The parameters which were monitored regularly included total suspended solids (TSS), mixed liquor suspended solids (MLSS), mixed liquor volatile suspended solids (MLVSS), biological oxygen demand (BOD), and chemical oxygen demand (COD). It was found that the biological degradation efficiency of the plant was below the desired levels in terms of COD and BOD. Also the plant operators were not maintaining consistent sludge retention time (SRT). Abrupt discharge of MLSS through the Surplus Activated sludge (SAS) pump was the main reason for the low MLSS in the aeration tank and consequently low treatment performance. In this study the SRT was optimized based on desired MLSS concentration between 3,000–3,500 mg/L and required performance in terms of BOD, COD and TSS. This study revealed that SRT is a very important operational parameter and its knowledge and correct implementation by the plant operators should be mandatory.


Fibers ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 4
Author(s):  
Blesson Isaac ◽  
Robert M. Taylor ◽  
Kenneth Reifsnider

This review paper examines the current state-of-the-art in fabrication of aligned fibers via electrospinning techniques and the effects of these techniques on the mechanical and dielectric properties of electrospun fibers. Molecular orientation, system configuration to align fibers, and post-drawing treatment, like hot/cold drawing process, contribute to better specific strength and specific stiffness properties of nanofibers. The authors suggest that these improved, aligned nanofibers, when applied in composites, have better mechanical and dielectric properties for many structural and multifunctional applications, including advanced aerospace applications and energy storage devices. For these applications, most fiber alignment electrospinning research has focused on either mechanical property improvement or dielectric property improvement alone, but not both simultaneously. Relative to many other nanofiber formation techniques, the electrospinning technique exhibits superior nanofiber formation when considering cost and manufacturing complexity for many situations. Even though the dielectric property of pure nanofiber mat may not be of general interest, the analysis of the combined effect of mechanical and dielectric properties is relevant to the present analysis of improved and aligned nanofibers. A plethora of nanofibers, in particular, polyacrylonitrile (PAN) electrospun nanofibers, are discussed for their mechanical and dielectric properties. In addition, other types of electrospun nanofibers are explored for their mechanical and dielectric properties. An exploratory study by the author demonstrates the relationship between mechanical and dielectric properties for specimens obtained from a rotating mandrel horizontal setup.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1501 ◽  
Author(s):  
Jung-Yao Chen ◽  
Chien-You Su ◽  
Chau-Hsien Hsu ◽  
Yi-Hua Zhang ◽  
Qin-Cheng Zhang ◽  
...  

Herein, poly(3-hexylthiophene-2,5-diyl) (P3HT) nanofiber-based organic field-effect transistors were successfully prepared by coaxial electrospinning technique with P3HT as the core polymer and poly(methyl methacrylate) (PMMA) as the shell polymer, followed by extraction of PMMA. Three different solvents for the core polymer, including chloroform, chlorobenzene and 1,2,4-trichlorobenzene, were employed to manipulate the morphologies and electrical properties of P3HT electrospun nanofibers. Through the analyses from dynamic light scattering of P3HT solutions, polarized photoluminescence and X-ray diffraction pattern of P3HT electrospun nanofibers, it is revealed that the P3HT electrospun nanofiber prepared from the chloroform system displays a low crystallinity but highly oriented crystalline grains due to the dominant population of isolated-chain species in solution that greatly facilitates P3HT chain stretching during electrospinning. The resulting high charge-carrier mobility of 3.57 × 10−1 cm2·V−1·s−1 and decent mechanical deformation up to a strain of 80% make the P3HT electrospun nanofiber a promising means for fabricating stretchable optoelectronic devices.


2020 ◽  
Vol 981 ◽  
pp. 115-120
Author(s):  
Etdal Bakhiet ◽  
Siti Fazira Samsudin ◽  
Farah Hanani Zulkifli ◽  
Aizi Nor Mazila Ramli

Interest in the nanotechnology invention has been increased among the researcher and industries which lead to many investigations and studies to develop a product with better performance. In this research, hydroxypropyl methylcellulose (HPMC) and poly (vinyl) alcohol (PVA) nanofiber with the ratio 1:1 and the concentration of 5 wt% and 7 wt%, respectively, were successfully fabricated by using electrospinning technique. The HPMC/ PVA was then blended with the different concentration of cellulose nanocrystal (CNC) at 2 wt%, 4 wt%, 6 wt% and 8 wt%. The SEM results of HPMC/PVA/CNC nanofibers shown random orientation fibers with average diameters of 62.28 nm - 252.80 nm. The TGA results showed three major weight loss that prove the decomposotion of HPMC/PVA/CNC was occured with three maximum temperature peaks around 69 °C, 290 °C and 392 °C. As for DSC, the peak intensity of the Tg in the electrospun nanofiber are decreasing as the concentration of CNCs increased might be due to the interfering of the CNC with the crystallization of the polymer causing mobility of the amorphous regions to be higher. Therefore, the study on the thermal properties of HPMC/PVA incorporated with CNCs nanofibers could be a reference for various potential applications.


2019 ◽  
Vol 80 (3) ◽  
pp. 458-465 ◽  
Author(s):  
Ahmed Samir Naje ◽  
Mohammed A. Ajeel ◽  
Isam Mohamad Ali ◽  
Hussein A. M. Al-Zubaidi ◽  
Peter Adeniyi Alaba

Abstract In this work, landfill leachate treatment by electrocoagulation process with a novel rotating anode reactor was studied. The influence of rotating anode speed on the removal efficiency of chemical oxygen demand (COD), total dissolved solids (TDS), and total suspended solids (TSS) of raw landfill leachate was investigated. The influence of operating parameters like leachate pH, leachate temperature, current, and inter-distance between the cathode rings and anode impellers on the electrocoagulation performance were also investigated. The results revealed the optimum rotating speed is 150 rpm and increasing the rotating speed above this value led to reducing process performance. The leachate electrocoagulation treatment process favors the neutral medium and the treatment performance increases with increasing current intensity. Furthermore, the electrocoagulation treatment performance improves with increasing leachate temperature. However, the performance reduces with increasing inter-electrode distance.


Sign in / Sign up

Export Citation Format

Share Document