scholarly journals Morphology and luminescence of photo-electrochemically synthesized porous silicon: Influence of varying current density

2017 ◽  
Vol 13 (4) ◽  
pp. 708-710
Author(s):  
Asad Thahe ◽  
Hazri Bakhtiar ◽  
Noriah Bidin ◽  
Zainuriah Hassan ◽  
Zainal Abidin Talib ◽  
...  

Achieving high quality porous silicon (PSi) materials with desired porosity remains challenging. Three good qualities of PSi samples are prepared by Photo electro-chemically etching a piece of n-type Si inside the solution of 20 M HF, 10 M C2H5OH and 10 M H2O2 at fixed etching time duration (30 min) and varying current density (15 mA/cm2, 30 mA/cm2 and 45 mA/cm2). As-prepared sample morphologies are characterized via scanning electron microscopy (SEM) and atomic force microscopy (AFM). The gravimetric method is used to estimate the thickness and porosity of the prepared samples. Current density (etching time) dependent morphologies, electronic bandgap and room temperature photoluminescence (PL) properties of such PSi nanostructures are evaluated. These PSi structures revealed enhanced rectifying characteristics with increasing current density. 

2016 ◽  
Vol 78 (3) ◽  
Author(s):  
Asad A. Thahe ◽  
Noriah Bidin ◽  
Mohammed A. Al-Azawi ◽  
Naser M. Ahmed

Achieving efficient visible photoluminescence from porous-silicon (PSi) is demanding for optoelectronic and solar cells applications. Improving the absorption and emission features of PSi is challenging. Photo-electro-chemical etching assisted formation of PSi layers on n-type (111) silicon (Si) wafers is reported. Samples are prepared at constant current density (~30 mA/cm2) under varying etching times of 10, 15, 20, 25, and 30 min. The influence of etching time duration on the growth morphology and spectral properties are inspected. Room temperature photoluminescence (PL) measurement is performed to determine the optical properties of as-synthesized samples. Sample morphologies are imaged via Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The thickness and porosity of the prepared samples are estimated using the gravimetric method. The emission and absorption data is further used to determine the samples band gap and electronic structure properties. Results and analyzed, interpreted with different mechanisms and compared.  


2021 ◽  
Vol 30 (1) ◽  
pp. 257-264
Author(s):  
Muna H. Kareem ◽  
Adi M. Abdul Hussein ◽  
Haitham Talib Hussein

Abstract In this study, porous silicon (PSi) was used to manufacture gas sensors for acetone and ethanol. Samples of PSi were successfully prepared by photoelectrochemical etching and applied as an acetone and ethanol gas sensor at room temperature at various current densities J= 12, 24 and 30 mA/cm2 with an etching time of 10 min and hydrofluoric acid concentration of 40%. Well-ordered n-type PSi (100) was carefully studied for its chemical composition, surface structure and bond configuration of the surface via X-ray diffraction, atomic force microscopy, Fourier transform infrared spectroscopy and photoluminescence tests. Results showed that the best sensitivity of PSi was to acetone gas than to ethanol under the same conditions at an etching current density of 30 mA/cm2, reaching about 2.413 at a concentration of 500 parts per million. The PSi layers served as low-cost and high-quality acetone gas sensors. Thus, PSi can be used to replace expensive materials used in gas sensors that function at low temperatures, including room temperature. The material has an exceptionally high surface-to-volume ratio (increasing surface area) and demonstrates ease of fabrication and compatibility with manufacturing processes of silicon microelectronics.


2010 ◽  
Vol 663-665 ◽  
pp. 324-327
Author(s):  
Chao Song ◽  
Rui Huang

The germanium film and Ge/Si multilayer structure were fabricated by magnetron sputtering technique on silicon substrate at temperatures of 500°C. Raman scattering spectroscopy measurements reveal that the nanocrystalline Ge occurs in both kinds of samples. Furthermore, from the atomic force microscopy (AFM) results, it is found that the grain size as well as spatially ordering distribution of the nc-Ge can be modulated by the Ge/Si multilayer structure. The room temperature photoluminescence was also observed in the samples. However, compared with that from the nc-Ge film, the intensity of PL from the nc-Ge/a-Si multilayer film becomes weaker, which is attributed to its lower volume fraction of crystallized component.


ISRN Optics ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Igor Iatsunskyi ◽  
Valentin Smyntyna ◽  
Nykolai Pavlenko ◽  
Olga Sviridova

Photoluminescent (PL) porous layers were formed on p-type silicon by a metal-assisted chemical etching method using H2O2 as an oxidizing agent. Silver particles were deposited on the (100) Si surface prior to immersion in a solution of HF and H2O2. The morphology of the porous silicon (PS) layer formed by this method was investigated by atomic force microscopy (AFM). Depending on the metal-assisted chemical etching conditions, the macro- or microporous structures could be formed. Luminescence from metal-assisted chemically etched layers was measured. It was found that the PL intensity increases with increasing etching time. This behaviour is attributed to increase of the density of the silicon nanostructure. It was found the shift of PL peak to a green region with increasing of deposition time can be attributed to the change in porous morphology. Finally, the PL spectra of samples formed by high concentrated solution of AgNO3 showed two narrow peaks of emission at 520 and 550 nm. These peaks can be attributed to formation of AgF and AgF2 on a silicon surface.


2021 ◽  
Vol 19 (50) ◽  
pp. 77-83
Author(s):  
Ghasaq Ali Tomaa ◽  
Alaa Jabbar Ghazai

Using photo electrochemical etching technique (PEC), porous silicon (PS) layers were produced on n-type silicon (Si) wafers to generate porous silicon for n-type with an orientation of (111) The results of etching time were investigated at: (5,10,15 min). X-ray diffraction experiments revealed differences between the surface of the sample sheet and the synthesized porous silicon. The largest crystal size is (30 nm) and the lowest crystal size is (28.6 nm) The analysis of Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscope (FESEM) were used to research the morphology of porous silicon layer. As etching time increased, AFM findings showed that root mean square (RMS) of roughness and porous silicon grain size decreased and FESEM showed a homogeneous pattern and verified the formation of uniform porous silicon.


2017 ◽  
Vol 24 (Supp01) ◽  
pp. 1850012 ◽  
Author(s):  
IBRAHIM R. AGOOL ◽  
AHMED N. ABD ◽  
MOHAMMED O. DAWOOD ◽  
HARITH M. ABD AL-AMEER ◽  
NADIR F. HABUBI ◽  
...  

The present work is concerned with the preparation of thin films of nanocrystalline porous silicon (PSi) by the method of electrochemical etching. CdTe nanoparticles (NPs) have been prepared by utilizing the pulsed laser ablation in liquid. The measurements of tunneling microscopy, X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FTIR) and atomic force microscopy (AFE) were carried out and revealed that the PSi was nanostructured and the produced CdTe NPs were ball shaped, having good disposability. The diffusion of CdTe NPs on the properties of PSi solar cell assures that there was an improvement upon their properties. The relationship between [Formula: see text] and the reverse bias voltage was observed to be linear. Values of the built-in potential were observed to be dependent on the laser fluence, current density and the etching time.


1994 ◽  
Vol 358 ◽  
Author(s):  
T. Van Buuren ◽  
S. Eisebitt ◽  
S. Patitsas ◽  
S. Ritchie ◽  
T. Tiedje ◽  
...  

ABSTRACTThe peak energy of the room temperature photoluminescence of porous silicon is compared with the bandgap determined from photoelectron spectroscopy measurements for a series of porous silicon samples prepared under different conditions. The photoluminescence bandgap is found to be smaller than the photoelectron spectroscopy bandgap, but exhibits the same trend with preparation conditions. The width of both the photoluminescence spectrum and the L-absorption edge increases when the current density during the preparation is increased or the sample is allowed to soak in HF after preparation.


1996 ◽  
Vol 03 (02) ◽  
pp. 1235-1239
Author(s):  
K. W. CHEAH ◽  
T. Y. LEUNG ◽  
M. H. CHAN ◽  
S. K. SO

Porous silicon is a material with a coral-like structure which has a fractal surface. To study these aspects of porous silicon and its relationship with the luminescence property, we have used atomic force microscopy (AFM). Samples were prepared using either pure HF or HF diluted with ethanol. From the results of AFM, distinct structural difference was observed from samples prepared by these two etchants. If we relate the structures to their respective photoluminescence spectra, it appears that finer structure produced shorter wavelength peak photoluminescence. However, the columns of the samples were too large for one to attribute the luminescence to quantum confinement only. Hence, an alternative model may be required to explain the luminescence mechanism. We have also observed that the composition of the etchant can also affect the evolution of the fractal dimension with respect to etching time. Probing of the surfcace electron states was performed using photothermal deflection spectroscopy (PDS). In order to ensure that only porous silicon layer was probed, free-standing films of various porosity were produced for the PDS measurement. The probe energy range was from 0.56 eV to 2.5 eV so that both the bulk states and the surface states were probed. The results showed that there is a clear blueshift of the energy band gap with respect to porosity, and the absorption coefficient decreases with porosity increase at a fixed photon energy. Overtones of hydrides and fluorides of silicon were also observed.


2011 ◽  
Vol 306-307 ◽  
pp. 1300-1303
Author(s):  
Chao Song ◽  
Rui Huang ◽  
Xiang Wang ◽  
Jie Song ◽  
Yan Qing Guo

The nc-Ge/a-Si multilayer structures were fabricated by ion beam sputtering technique on silicon substrates at temperature of 400 °C. Raman scattering spectroscopy, atomic force microscopy (AFM) and room temperature photoluminescence were used to characterize the structure and optical property of the samples. It was found that the nc-Ge/a-Si multilayer sample can be obtained when the Ge sublayer is 3 nm. The room temperature photoluminescence was observed and the luminescent peak is located at 685 nm. Compared with the a-Ge/a-Si film, the intensity of PL of the nc-Ge/a-Si multilayer film becomes stronger due to the higher volume fraction of crystallized component.


2012 ◽  
Vol 620 ◽  
pp. 368-372 ◽  
Author(s):  
Saleh H. Abud ◽  
Hassan Zainuriah ◽  
Fong Kwong Yam ◽  
Alaa J. Ghazai

In this paper, InGaN/GaN/AlN/Si (111) structure was grown using a plasma-assisted molecular beam epitaxy (PA-MBE) technique. The structural and optical properties of grown film have been characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), high resolution X-ray diffraction (HR-XRD) and photoluminescence (PL). Indium-mole fraction has been computed to be 0.27 using XRD data and Vegards law with high grain size and low tensile strain. Room-temperature photoluminescence revealed an intense peak at 534 nm (2.3 eV) related to our sample In0.27Ga0.73N.


Sign in / Sign up

Export Citation Format

Share Document