scholarly journals Biocomposites conductive scaffold based on PEDOT:PSS/nHA/chitosan/PCL: Fabrication and characterization

2019 ◽  
Vol 15 (2) ◽  
pp. 146-149
Author(s):  
Alireza Lari ◽  
Naznin Sultana ◽  
Chin Fhong Soon

Biomaterial-based scaffolds with suitable characteristics are highly desired in tissue engineering (TE) application. Biocomposites based on polymer and ceramics increase the chance for modulating the properties of scaffold. In recent years, researchers have considered conductive polymers to be used in TE application, due to their conductivity. This property has a good impact on tissue regeneration. A suitable design for bone substitute that consists of considerations such as material component, fabrication technique and mechanical properties. The previous studies on PEDOT:PSS/nHA/CS showed high wettability rate but low mechanical properties. Polycaprolactone (PCL) is a biodegradable and biocompatible polymer with a low wettability. The incorporation of PCL inside biocomposite can lead to the decrement in wettability and increment in mechanical property. In addition, this paper would examine the feasibility of blending of PCL and chitosan to fabricate PEDOT:PSS/nHA/CS composite scaffold. The fabrication technique of freezing/ lyophilization was used in this study. The scaffolds were characterized morphologically using scanning electron microscopy (SEM). Wettability was studied using a contact angle instrument. The attenuated total reflectance fourier transform infrared spectroscopy (ATR-FTIR) spectra interpreted the presence of polymeric ingredients within composite scaffold. Conductivity of the scaffolds was measured using a Digital Multimeter. In-vitro biological evaluation of the scaffolds was studied using human skin Fibroblast (HSF) cell line. The morphological study of biocomposite PEDOT:PSS/nHA/CS/PCL scaffold revealed random pore sizes and 66% porosity. Contact angle of the scaffold was increased and the swelling property and pore sizes were decreased after blending of PCL polymer. The viability of HSF cells on biocomposite PEDOT:PSS/nHA/CS/PCL scaffold was 85%. After 7 days, SEM analysis revealed the presence of cells on the surface of scaffold. In conclusion, the results suggested that PEDOT:PSS/nHA/CS/PCL biocomposite scaffold was non-toxic to cells and has suitable properties.

2020 ◽  
Vol 10 (4) ◽  
pp. 490-502
Author(s):  
Huajun Zhu ◽  
Chunyu Qian ◽  
Wanshu Xiao ◽  
Qiang Zhang ◽  
Zili Ge

Application research on repairing oral and maxillofacial epithelial defects with filin-protein porous composite scaffold. The silk fibroin solution was synthesized by hydrothermal synthesis, and the film was prepared by stirring and pouring. Then silk fibroin film and silk fibroin freeze-dried support were prepared by stirring and smooth casting. It was characterized by FTIR, mechanical properties, dissolution detection, contact Angle and SEM. To evaluate the performance of this material in repairing rabbit oral mucosa and rabbit skin epithelial defects. The characterization shows that the material has good contact Angle, mechanical properties, dissolution and biocompatibility. It has good repair function to rabbit oral epithelial tissue and skin epithelial tissue. Silk fibroin has excellent and unique properties. It has good development prospects and great clinical value in tissue regeneration.


2011 ◽  
Vol 493-494 ◽  
pp. 582-587 ◽  
Author(s):  
Marziyeh Abbasi-Shahni ◽  
Saeed Hesaraki ◽  
Ali Asghar Behnam-Ghader ◽  
Masoud Hafezi-Ardakani

In this study, nanocomposites based on of β-tri calcium phosphate (β-TCP) and 2.5-10 wt% merwinite nanoparticles were prepared and sintered at 1100-1300°c.The mechanical properties were investigated by measuring compressive strength and fracture toughness. Structural properties were evaluated by XRD, TEM and SEM analysis, and the in vitro bioactivity was studied by soaking the samples in simulated body fluid (SBF). The mechanical strength of the sintered samples wereincreased, by increasing the amount of merwinite phase up to 5 wt%, whereas it decreased when the samples were sintered at 1100 and 1200°c. Nanostructured calcium phosphate layer was formed on the surfaces of the nanocomposites within 1 day immersion in simulated body fluid. Because of appropriate mechanical properties the composite is suggested to be used as substitute for hard tissue.


RSC Advances ◽  
2016 ◽  
Vol 6 (112) ◽  
pp. 110557-110565 ◽  
Author(s):  
Yinxian Yu ◽  
Sha Hua ◽  
Mengkai Yang ◽  
Zeze Fu ◽  
Songsong Teng ◽  
...  

A composite scaffold was fabricated with a method involving both electrospinning and 3D printing to give microscale pores and good mechanical properties. Biocompatibility and cell infiltration on the scaffold was evaluated by an in vitro study.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Tao Sun ◽  
Tareef Hayat Khan ◽  
Naznin Sultana

Composite scaffolds based on biodegradable natural polymer and osteoconductive hydroxyapatite (HA) nanoparticles can be promising for a variety of tissue engineering (TE) applications. This study addressed the fabrication of three-dimensional (3D) porous composite scaffolds composed of HA and chitosan fabricated via thermally induced phase separation and freeze-drying technique. The scaffolds produced were subsequently characterized in terms of microstructure, porosity, and mechanical property.In vitrodegradation andin vitrobiological evaluation were also investigated. The scaffolds were highly porous and had interconnected pore structures. The pore sizes ranged from several microns to a few hundred microns. The incorporated HA nanoparticles were well mixed and physically coexisted with chitosan in composite scaffold structures. The addition of 10% (w/w) HA nanoparticles to chitosan enhanced the compressive mechanical properties of composite scaffold compared to pure chitosan scaffold.In vitrodegradation results in phosphate buffered saline (PBS) showed slower uptake properties of composite scaffolds. Moreover, the scaffolds showed positive response to mouse fibroblast L929 cells attachment. Overall, the findings suggest that HA/chitosan composite scaffolds could be suitable for TE applications.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 361
Author(s):  
Magdalena Ziąbka ◽  
Michał Dziadek

Three types of thermoplastic polymers, acrylonitrile butadiene styrene (ABS), polymethyl methacrylate acrylic (PMMA) and high-density polyethylene (HDPE), were enriched with silver nanoparticles (AgNPs) of 0.5 wt.% and 1.0 wt.%, respectively. The polymers and the composites were manufactured via injection molding. Regarding the potential of these polymers as matrices for long-term use as biomaterials, the aim of this study was to examine their stability in the in vitro conditions during a three-year incubation period in deionized water. In this work, microstructural observations were performed, and mechanical properties were assessed. Surface parameters, such as roughness and contact angle, were comprehensively investigated. The microstructural evaluation showed that the silver additive was homogeneously dispersed in all the examined matrices. The 36-month immersion period indicated no microstructural changes and proved the composites’ stability. The mechanical tests confirmed that the composites retained comparable mechanical properties after the silver incorporation. The Young’s modulus and tensile strength increased during long-term incubation. The addition of silver nanoparticles did not alter the composites’ roughness. The contact angle increased with the rising AgNP content. It was also shown that the materials’ roughness increased with the incubation time, especially for the ABS- and HDPE-based materials. The water environment conditions improved the wettability of the tested materials. However, the silver nanoparticles’ content resulted in the contact angle decreasing during incubation. The conducted studies confirmed that the mechanical properties of all the polymers and composites did not deteriorate; thus, the materials may be considered stable and applicable for long-term working periods in aqueous environments.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Wentai Guo ◽  
Zifeng Yang ◽  
Xiusen Qin ◽  
Yingqi Wei ◽  
Chuangkun Li ◽  
...  

Tissue engineering scaffolds with nanofibrous structures provide positive support for cell proliferation and differentiation in biomedical fields. These scaffolds are widely used for defective tissue repair and drug delivery. However, the degradation performance and mechanical properties of scaffolds are often unsatisfactory. Here, we successfully prepared a novel poly(3-hydroxybutyrate-4-hydroxybutyrate)/polypyrrole (P34HB-PPy) core-shell nanofiber structure scaffold with electrospinning and in situ surface polymerization technology. The obtained composite scaffold showed good mechanical properties, hydrophilicity, and thermal stability based on the universal material testing machine, contact angle measuring system, thermogravimetric analyzer, and other methods. The results of the in vitro bone marrow-derived mesenchymal stem cells (BMSCs) culture showed that the P34HB-PPy composite scaffold effectively mimicked the extracellular matrix (ECM) and exhibited good cell retention and proliferative capacity. More importantly, P34HB is a controllable degradable polyester material, and its degradation product 3-hydroxybutyric acid (3-HB) is an energy metabolite that can promote cell growth and proliferation. These results strongly support the application potential of P34HB-PPy composite scaffolds in biomedical fields, such as tissue engineering and soft tissue repair.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 831 ◽  
Author(s):  
Yanan Wu ◽  
Zhengwen Ding ◽  
Haohao Ren ◽  
Mizhi Ji ◽  
Yonggang Yan

Many studies about fabricating organic-inorganic composite materials have been carried out in order to mimic the natural structure of bone. Pearl, which has a special block-and-mortar hierarchical structure, is a superior bone repair material with high osteogenic activity, but it shows few applications in the clinical bone repair and reconstruction because of its brittle and uneasily shaped properties. In this work, pearl powder (P)/poly (amino acid) (PAA) composites were successfully prepared by a method of in situ melting polycondensation to combine the high osteogenic activity of the pearl and the pliability of the PAA. The mechanical properties, in vitro bioactivity and biocompatibility as well as osteogenic activity of the composites were investigated. The results showed that P/PAA composites have both good mechanical properties and bioactivity. The compressive strength, bending strength and tensile strength of the composites reached a maximum of 161 MPa, 50 MPa and 42 MPa, respectively; in addition, apatite particles successfully deposited on the composites surface after immersion in simulated body fluid (SBF) for 7 days indicated that P/PAA composites showed an enhanced mineralization capacity and bioactivity due to incorporation of pearl powder and PAA. The cell culture results revealed that higher cell proliferation and better adhesion morphology of mouse bone marrow mesenchymal stem cells (MSCs) appeared on the composite surface. Moreover, cells growing on the surface of the composites exhibited higher alkaline phosphatase (ALP) activity, more calcium nodule-formation, and higher expression levels of osteogenic differentiation-related genes (COL 1, RunX2, OCN, and OPN) than cells grown on PAA surface. The P/PAA composites exhibited both superior mechanical properties to the pearl powder, higher bioactivity and osteogenic capability compared with those of PAA.


Sign in / Sign up

Export Citation Format

Share Document