scholarly journals Preparation and characterization of p-sulfonated calix[4]arene functionalized chitosan hydrogel beads and their preliminary adsorption study towards removal of lead(II) and zinc(II) ions

2020 ◽  
Vol 16 (4) ◽  
pp. 429-432
Author(s):  
Hamizah Syahirah Mohamad Zubir ◽  
Mohd Haniff Wahid ◽  
Irene Ling ◽  
Hong Ngee Lim ◽  
Sazlinda Kamaruzaman ◽  
...  

p-sulfonated calix[4]arene functionalized chitosan hydrogel beads have been successfully prepared by mixing p-sulfonated calix[4]arene and chitosan in dilute acetic acid  solution (1% v/v), followed by dropping the mixture into sodium hydroxide solution to form beads with diameters of ~0.1 cm. The presence of the active sulfonate groups and the unique structure of calixarene render the material useful as an adsorbent for heavy metal ions. Metal adsorption on p-sulfonated calix[4]arene is possible through a combination of physical and ionic interactions. Atomic Absorption Spectroscopy (AAS) results showed that the amount of adsorbed metal ion is optimum at 10 ppm for all samples. The overall percentage of metal ion removal shows that p-sulfonated calix[4]arene modified chitosan is the best adsorbent with up to 98% removal achieved for Pb(II) and 90% removal for Zn(II). This is followed by p-sulfonated calix[4]arene and graphene oxide (GO) modified chitosan with up to 90% removal for Pb(II)  and 89% removal for Zn(II) and pure chitosan hydrogel beads with up to 60% removal for both Pb(II)  and Zn(II). The results clearly prove that the presence of p-sulfonated calix[4]arene can enhance the adsorption of heavy metal ions. In addition, the adsorbent shows higher Pb(II) removal compared to Zn(II).

2008 ◽  
Vol 569 ◽  
pp. 285-288 ◽  
Author(s):  
Hyun Jong Lee ◽  
Beom Goo Lee ◽  
Dae Yong Shin ◽  
Heon Park

In this study lignocellulosic fibers, such as kenaf bast, kenaf core, sugar cane bagasse, cotton, coconut coir, and spruce, which are environment friendly natural materials, were tested for their ability to remove copper, nickel and zinc ions from aqueous solutions. The fibers were analyzed for Klason lignin content, water sorption capacity and dry volume. The fiber with the highest level of heavy metal removal in the separate and mixed solution was kenaf bast.. In the mixed solution kenaf bast, sugar cane bagasse and cotton removed more copper and nickel ion than in the separate solution, and the amounts of removed heavy metal ions were changed in some lignocellulosic fibers, compared to those of the separate solution. In the mixed solution heavy metal ions may compete with one another for sorption sites on the surface of lignocellusic fiber. In kenaf bast to remove heavy metal ions most, Klason lignin content was the second lowest, and water sorption and dry volume were the lowest in all tested lignocellulosic fibers. It showed that removal of heavy metal ions does not correlate with any chemical and physical factors, but may be affected by the cell wall structure of lignocellulosic fibers and how many free phenolic groups in lignin, which are considered as the heavy metal ion binding site, are exposed on the surface of fibers. Cotton, with about 1% Klason lignin, was very low in heavy metal ion removal, while all other fibers containing greater than about 10% lignin did remove heavy metal ions. It showed that even the lignin content of lignocellulosic fibers does not correlate with heavy metal ion removal but lignin does play a role in heavy metal ion removal.


Substantia ◽  
2021 ◽  
pp. 79-88
Author(s):  
Mohammad Ziaee ◽  
Mojtaba Taseidifar ◽  
Richard M. Pashley ◽  
Barry W. Ninham

Pollution of drinking water by toxic heavy-metal ions is a matter of concern worldwide. These ions occur naturally, and also from environmental spills, radioactive wastes and other industrial waste. Arsenic and lead are typical examples. A novel green surfactant, purpose designed, and environmentally friendly is shown to be extremely effective and specific for heavy metal ion removal. This is a considerable step forward on previous technologies. Surfactants have been used universally to remove organic and inorganic contaminants from water. But little selectivity has been achieved. After usage, the residual surfactants are discharged into surface waters or sewage systems.  This causes environmental pollution. In this review, three surfactants from different classes (novel green surfactant, synthetic chemical surfactant and biosurfactant) are compared in terms of their efficiency in flotation, removal of different heavy-metal ions, biodegradability, and toxicity level, including their advantages and disadvantages.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 234
Author(s):  
Ayatzhan Akhmetzhan ◽  
Nurbala Myrzakhmetova ◽  
Nurgul Amangeldi ◽  
Zhanar Kuanyshova ◽  
Nazgul Akimbayeva ◽  
...  

Scientists have been encouraged to find different methods for removing harmful heavy metal ions and dyes from bodies of water. The adsorption technique offers promising outcomes for heavy metal ion removal and is simple to run on a large scale, making it appropriate for practical applications. Many adsorbent hydrogels have been developed and reported, comprising N,N-dimethylacrylamide (DMAA)-based hydrogels, which have attracted a lot of interest due to their reusability, simplicity of synthesis, and processing. DMAA hydrogels are also a suitable choice for self-healing materials and materials with good mechanical properties. This review work discusses the recent studies of DMAA-based hydrogels such as hydrogels for dye removal and the removal of hazardous heavy metal ions from water. Furthermore, there are also references about their conduct for self-healing materials and for enhancing mechanical properties.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1037 ◽  
Author(s):  
Baobin Wang ◽  
Miao Ran ◽  
Guigan Fang ◽  
Ting Wu ◽  
Yonghao Ni

The pentose/furfural industrial manufacturing process uses corn cob residue as a raw material, where such a process yields significant amount of lignin-rich residue (LCR) at the end, which is commonly disposed by burning. In this study, the conversion of LCR to biochars (BCs), and their subsequent applications for heavy metal ion removal, were investigated. The BCs were prepared through hydrothermal carbonization and post-activation, using either ZnCl2 or H3PO4 treatment. The as-prepared activated BCs were characterized using N2 adsorption–desorption isotherms, XRD, FT-IR, SEM and TEM, and their performance in removing heavy metal ions (Pb2+, Cu2+, Cd2+) from aqueous solutions was assessed. The ZnCl2-activated BCs (BC-ZnCl2) exhibit a higher adsorption capacity than the H3PO4-activated BCs (BC-H3PO4), mainly due to the differences in their chemical/physical characteristics. The related adsorption kinetics and isotherms were analyzed.


2014 ◽  
Vol 901 ◽  
pp. 45-51
Author(s):  
Dan Feng Cui ◽  
Jian Zhuang Zhao ◽  
Yan Ying Zheng

This paper presents a new decoration view functionalization of mesoporous silica to extend their applications to heavy metal ion removal. The study showed that Hacac can be incorporated into the structure through in-situ strategy, and the calcined Hacac-silica possesses advantages of high specific surface area of about 1496 m2/g and pore size of 4nm, ordered spheric morphology of about 300nm in diameter. Auxiliary by ultrasonic technology, the heavy metal ions remove rates are more than 95% for Pb2+, Cu2+ and Cr3+. More choice of chelating agents can be used for further functionalization of silica based mesoporous material.


2019 ◽  
Vol 31 (5) ◽  
pp. 1009-1012 ◽  
Author(s):  
Shalini ◽  
Pratibha Naithani

A new adsorbent for removing lead, nickel, chromium and arsenic ions from industrial wastewaters has been investigated. This new adsorbent consists of four waste products tea waste, rice husk, sugarcane bagasse and peanut shell. The adsorbent was prepared without any physical and chemical treatment. Batch experiments were conducted to assess the removal of selected metal ions from wastewaters. The results have shown that the mixture of four waste products presented an excellent adsorption of heavy metal ions. The equilibrium time was dependent on type of adsorbent and sample. The highest percentage of metal ion removal was 100 %. The results showed pseudo second order kinetics. The surface chemical nature of prepared adsorbent was studied by Fourier transform infrared spectroscopy. The functional group present in adsorbent has affinity towards heavy metal ions to form metal complexes. The surface morphology of prepared adsorbent was confirmed by scanning electron microscopy and chemical composition was analyzed by energy dispersive X-ray spectroscopy.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 685
Author(s):  
Ai-Huei Chiou ◽  
Jun-Luo Wei ◽  
Ssu-Han Chen

A novel surface-enhanced Raman scattering (SERS)-based probe to capture heavy metal ion (Zn2+) by bovine serum albumin (BSA) using Si-nanowire (SiNW) arrays with silver nanoparticles (AgNPs) was developed. A layer with AgNPs was deposited on the SiNW surface by RF magnetron sputtering for enhancement of SERS signals. Using a high-resolution transmission electron microscope (HRTEM), the observation reveals that the AgNP layer with depths of 30–75 nm was successfully deposited on SiNW arrays. The Ag peaks in EDS and XRD spectra of SiNW arrays confirmed the presence of Ag particles on SiNW arrays. The WCA observations showed a high affinity of the Ag–SiNW arrays immobilized with BSA (water contact angle (WCA) = 87.1°) and ZnSO4 (WCA = 8.8°). The results of FTIR analysis illustrate that the conjugate bonds exist between zinc sulfate (ZnSO4) and –OH groups/–NH groups of BSA. The resulting SiNWs/Ag NPs composite interfaces showed large Raman scattering enhancement for the capture of heavy metal ions by BSA with a detection of 0.1 μM. BSA and ZnSO4 conjugations, illustrating specific SERS spectra with high sensitivity, which suggests great promise in developing label-free biosensors.


2021 ◽  
Author(s):  
Rongrong Si ◽  
Daiqi Wang ◽  
Yehong Chen ◽  
Dongmei Yu ◽  
Qijun Ding ◽  
...  

Abstract Heavy metal ion pollutions are of serious threat for our human health, and advanced technologies on removal of heavy metal ions in water or soil are in the focus of intensive research worldwide. Nanocellulose based adsorbents are emerging as an environmentally friendly appealing materials platform for heavy metal ions removal as nanocellulose has higher specific surface area, excellent mechanical properties and good biocompatibility. In this review, we briefly compare the differences of three kinds of nanocellulose and their preparation method. Then we cover the most recent work on nanocellulose based adsorbents for heavy metal ions removal, and present an in-depth discussion of the modification technologies for nanocellulose in assembling high performance heavy ions adsorbent process. By introducing functional groups, such as amino, carboxyl, phenolic hydroxyl, and thiol, the nanocellulose based adsorbents not only remove single heavy metal ions through ion exchange, chelation/complexation/coordination, electrostatic attraction, hydrophobic actions, binding affinity and redox reactions, but also can selectively adsorb multiple heavy ions in water. Finally, some challenges of nanocellulose based adsorbents for heavy metal ions are also prospected. We anticipate that the review supplies some guides for nanocellulose based adsorbents applied in heavy metal ions removal field.


2018 ◽  
Vol 42 (11) ◽  
pp. 8864-8873 ◽  
Author(s):  
Leili Esrafili ◽  
Vahid Safarifard ◽  
Elham Tahmasebi ◽  
M. D. Esrafili ◽  
Ali Morsali

We examined adsorption behavior of some MOFs having different functional groups in their pillar structures for adsorption of some heavy metal ions.


Sign in / Sign up

Export Citation Format

Share Document