scholarly journals Influence of heavy metals occurrence on respiratory activity of microorganisms in the compost

Author(s):  
Monika Vítězová ◽  
Tomáš Vítěz

This work deals with the influence of selected heavy metals, copper, nickel, cobalt, zinc and cadmium on respiratory activity of microorganisms during the composting process. We focused on comparing the respiratory activity of microorganisms in the compost after composting process in the presence of different concentrations of above mentioned metals and the measured results were confronted with the valid Czech standard for industrial composts. The results show that the high inhibitory effect at low concentrations, about 1 mg/dm3, has cobalt, for which the limit concentration is no set by Czech standard. Other heavy metals exhibit an inhibitory effect at concentrations higher than maximum allowable concentration, which is set in Czech standard for compost class I and II, with regard to their application to agricultural land.

2008 ◽  
Vol 2 (1) ◽  
pp. 176-182 ◽  
Author(s):  
P.S.O. Martins ◽  
N.F. Almeida ◽  
R.G.S. Costa ◽  
A.P. Franco ◽  
M.F. Vieira ◽  
...  

The needing of a bacterial extracellular polymeric substance (EPS) application in bioremediation of an aqueous system containing glucose and/or gasoline and/or heavy metals (Cd2+, Zn2+ and Cu2+) by two different microbial consortia was studied. At the low concentrations (1.00 ppm of each metal), it was observed an inhibitory effect on the metabolism of the “consortium 1”, as well as the application of EPS has improved the cellular growing in media containing glucose and/or gasoline as carbon sources, indicating that using this substance decreases the negative effect caused by the presence of heavy metals. In the other hand, the application of small concentrations of EPS was evaluated, and results show that a little increase in this substance concentration leads to an improvement of 39 % in cellular growing of the “consortium 2”, indicating the potential use of the EPS in a system with gasoline and metals. Once many microorganisms can produce this kind of substance during cultivation, our results show that a system with low concentrations of hydrocarbons and metals could be susceptible to natural attenuation, without human intervention in the environment, especially if the process is conducted in a larger period of time.


2020 ◽  
Vol 57 (3) ◽  
pp. 68-71
Author(s):  
Miljan Samardžić ◽  
Irina Andreeva ◽  
Zoran Galić ◽  
Jovica Vasin

In almost all industrially developed regions of the Russian Federation, the soil is contaminated with heavy metals (HM) often in concentrations which exceed limits of safety. This contamination causes degradation of agricultural land, which underlines the importance of the complex continuous monitoring of the dynamics of on-going changes in urban ecosystems against the background of natural processes. Quantitative assessment of the environmental sustainability of the soil according to the biological indicators of its condition is of enormous importance, in particular the balance of microbial carbon in soils, which are under varying degrees of anthropogenic pressure. Experiments were carried out to determine the phytoremediation potential of the spring rapeseed plants on soil contaminated with heavy metals. The aim of the study was to assess the respiratory activity of albic luvisol at different levels of its contamination with zinc and nickel under the conditions of a growing experiment with spring rapeseed plants. The experimental data on the respiratory activity of soil artificially contaminated with zinc and nickel in the dose range of 400-800 and 30-60 mg kg-1 of soil respectively, showed that microbial activity had a strong positive correlation with the presence of spring rapeseed plants in the vessels and weak correlation on the presence of toxic elements in the soil. According to the respiratory activity of albic luvisol, it was found that in the first 13 days of vegetation, cultivation of spring rapeseed plants had a positive effect on the sustainability of soil microbiocenosis to complex pollution with zinc and nickel.


2020 ◽  
Vol 11 (3) ◽  
pp. 367-371
Author(s):  
E. G. Krylova ◽  
E. V. Garin

Surface water pollution has a complex multicomponent nature, due to a combination of various heavy metals that have a synergistic or antagonistic effect on various physiological parameters. Under model conditions, the combined effect of several heavy metals on aquatic plants was studied in terms of their toxicity, taking into account the nature of the interaction. In laboratory conditions, we studied the effect of nickel and copper ions and their mixtures in different concentrations on seed germination, growth and development of seedlings of the coastal-aquatic plant Alisma plantago-aquatica L. At the end of the experiment, seed germination, inhibition coefficient, morphometric indicators of seedlings and tolerance index were determined. Alisma seeds are highly resistant to nickel and copper chlorides and their mixtures. The toxicity limit for seed germination at 1–500 mg/L was not detected, although the inhibition coefficient in all variants of the experiment increased. A greater toxic effect of copper ions was noted compared to nickel ions. With the joint action of two metals on seed germination, a change in the nature of the effect from an independent action at low concentrations to antagonism at high concentrations was revealed. The growth and development of seedlings was observed at 1–100 mg/L. The main inhibitory effect of heavy metals was on the length of the main root, the first true leaf, and the number of adventitious roots. Necrosis of the root system and hypocotyl, a weakening of the differentiation of the site of transition of the hypocotyl to the cotyledon, a change in the shape of the cotyledon, the colour intensity and turgor of the cotyledon and leaves were noted. The tolerance index showed that resistance at a level above 50% to the action of nickel, copper and their mixture was maintained at 1 mg/L. In the case of the development of hypocotyl and cotyledon, copper was more toxic than nickel; nickel had a greater inhibitory effect on leaves. Under the action of the heavy metal mixture on the growth and development of seedlings, the independent action at low concentrations changed to antagonistic at high concentrations, which is probably due to competition in a number of indicators between nickel and copper.


1989 ◽  
Vol 61 (02) ◽  
pp. 254-258 ◽  
Author(s):  
Margaret L Rand ◽  
Peter L Gross ◽  
Donna M Jakowec ◽  
Marian A Packham ◽  
J Fraser Mustard

SummaryEthanol, at physiologically tolerable concentrations, inhibits platelet responses to low concentrations of collagen or thrombin, but does not inhibit responses of washed rabbit platelets stimulated with high concentrations of ADP, collagen, or thrombin. However, when platelet responses to high concentrations of collagen or thrombin had been partially inhibited by prostacyclin (PGI2), ethanol had additional inhibitory effects on aggregation and secretion. These effects were also observed with aspirin- treated platelets stimulated with thrombin. Ethanol had no further inhibitory effect on aggregation of platelets stimulated with ADP, or the combination of ADP and epinephrine. Thus, the inhibitory effects of ethanol on platelet responses in the presence of PGI2 were very similar to its inhibitory effects in the absence of PGI2, when platelets were stimulated with lower concentrations of collagen or thrombin. Ethanol did not appear to exert its inhibitory effects by increasing cyclic AMP above basal levels and the additional inhibitory effects of ethanol in the presence of PGI2 did not appear to be brought about by further increases in platelet cyclic AMP levels.


1986 ◽  
Vol 55 (01) ◽  
pp. 136-142 ◽  
Author(s):  
K J Kao ◽  
David M Shaut ◽  
Paul A Klein

SummaryThrombospondin (TSP) is a major platelet secretory glycoprotein. Earlier studies of various investigators demonstrated that TSP is the endogenous platelet lectin and is responsible for the hemagglutinating activity expressed on formaldehyde-fixed thrombin-treated platelets. The direct effect of highly purified TSP on thrombin-induced platelet aggregation was studied. It was observed that aggregation of gel-filtered platelets induced by low concentrations of thrombin (≤0.05 U/ml) was progressively inhibited by increasing concentrations of exogenous TSP (≥60 μg/ml). However, inhibition of platelet aggregation by TSP was not observed when higher than 0.1 U/ml thrombin was used to activate platelets. To exclude the possibility that TSP inhibits platelet aggregation by affecting thrombin activation of platelets, three different approaches were utilized. First, by using a chromogenic substrate assay it was shown that TSP does not inhibit the proteolytic activity of thrombin. Second, thromboxane B2 synthesis by thrombin-stimulated platelets was not affected by exogenous TSP. Finally, electron microscopy of thrombin-induced platelet aggregates showed that platelets were activated by thrombin regardless of the presence or absence of exogenous TSP. The results indicate that high concentrations of exogenous TSP (≥60 μg/ml) directly interfere with interplatelet recognition among thrombin-activated platelets. This inhibitory effect of TSP can be neutralized by anti-TSP Fab. In addition, anti-TSP Fab directly inhibits platelet aggregation induced by a low (0.02 U/ml) but not by a high (0.1 U/ml) concentration of thrombin. In conclusion, our findings demonstrate that TSP is functionally important for platelet aggregation induced by low (≤0.05 U/ml) but not high (≥0.1 U/ml) concentrations of thrombin. High concentrations of exogenous TSP may univalently saturate all its platelet binding sites consequently interfering with TSP-crosslinking of thrombin-activated platelets.


Author(s):  
Yujuan Gao ◽  
Jianli Jia ◽  
Beidou Xi ◽  
Dongyu Cui ◽  
Wenbing Tan

The heavy metal pollution induced by agricultural land use change has attracted great attention. In this study, the divergent response of bioavailability of heavy metals in rhizosphere soil to different...


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 585
Author(s):  
Catalina Iticescu ◽  
Puiu-Lucian Georgescu ◽  
Maxim Arseni ◽  
Adrian Rosu ◽  
Mihaela Timofti ◽  
...  

The use of sewage sludge in agriculture decreases the pressure on landfills. In Romania, massive investments have been made in wastewater treatment stations, which have resulted in the accumulation of important quantities of sewage sludge. The presence of these sewage sludges coincides with large areas of degraded agricultural land. The aim of the present article is to identify the best technological combinations meant to solve these problems simultaneously. Adapting the quality and parameters of the sludge to the specificity of the land solves the possible compatibility problems, thus reducing the impact on the environment. The physico-chemical characteristics of the fermented sludge were monitored and optimal solutions for their treatment were suggested so as to allow that the sludge could be used in agriculture according to the characteristics of the soils. The content of heavy metals in the sewage sludge was closely monitored because the use of sewage sludge as a fertilizer does not allow for any increases in the concentrations of these in soils. The article identifies those agricultural areas which are suitable for the use of sludge, as well as ways of correcting some parameters (e.g., pH), which allow the improvement of soil quality and obtained higher agricultural production.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Halyna M. Semchyshyn

The biphasic-dose response of microorganisms to hydrogen peroxide is a phenomenon of particular interest in hormesis research. In different animal models, the dose-response curve for ethanol is also nonlinear showing an inhibitory effect at high doses but a stimulatory effect at low doses. In this study, we observed the hormetic-dose response to ethanol in budding yeastS. cerevisiae. Cross-protection is a phenomenon in which exposure to mild stress results in the acquisition of cellular resistance to lethal stress induced by different factors. Since both hydrogen peroxide and ethanol at low concentrations were found to stimulate yeast colony growth, we evaluated the role of one substance in cell cross-adaptation to the other substance as well as some weak organic acid preservatives. This study demonstrates that, unlike ethanol, hydrogen peroxide at hormetic concentrations causes cross-resistance ofS. cerevisiaeto different stresses. The regulatory protein Yap1 plays an important role in the hormetic effects by low concentrations of either hydrogen peroxide or ethanol, and it is involved in the yeast cross-adaptation by low sublethal doses of hydrogen peroxide.


1961 ◽  
Vol 39 (3) ◽  
pp. 551-558 ◽  
Author(s):  
P. N. Abadom ◽  
K. Ahmed ◽  
P. G. Scholefield

Tofranil inhibits the respiratory activity of rat brain cortex slices incubated in a glucose-containing medium. It also inhibits the uptake and incorporation of glycine-1-C14at concentrations which have only a slight inhibitory effect on the respiration of slices. Tofranil also inhibits oxidative phosphorylation in both rat liver and rat brain mitochondria but at higher concentrations respiration is greatly affected. Tofranil differs quantitatively from chlorpromazine in its greater inhibitory effect on the ATP–Pi32exchange reaction and its lesser effect on the cytochrome c oxidase activity of rat liver mitochondria.


1999 ◽  
Vol 39 (6) ◽  
pp. 175-181 ◽  
Author(s):  
Abdallah Shanableh ◽  
Pushpa Ginige

The biosolids industry in Australia is evolving around the beneficial use of biosolids as a resource. Phosphorus rich biosolids from biological nutrient removal (BNR) facilities are highly desirable for land application. However, the accumulation of toxic heavy metals and industrial organic contaminants may render the biosolids unsuitable for land application. The presence of toxic heavy metals has been identified by Local Authorities in Australia as a major constraint limiting the beneficial use of biosolids. The potential of off-site contamination due to the migration of nutrients is also a major concern especially when applying biosolids to acidic agricultural land. Accordingly, the relevant environment protection and conservation agencies are involved in either developing or finalising guidelines to control the beneficial use of biosolids products. Metals bioleaching is a process achieved through bio-acidification. Bio-acidification of biosolids prior to land application can be used to dissolve and remove a significant fraction of the heavy metals content of the product. However, the process also reduces the nutrients content of the resource. Bio-acidification of Loganholme (Queensland) BNR biosolids dissolved 76% of the total phosphorus and 38% of the TKN. The heavy metals solubilisation results reached 50% for Cr, 79% for Ni, 45% for Zn, 24% for Cu, 30% for Cd, and 82% for Pb.


Sign in / Sign up

Export Citation Format

Share Document