Passive Impedance-Loaded Surface Acoustic Wave (SAW) Sensor for Soil Condition Monitoring

2021 ◽  
Author(s):  
Jian Chu
Author(s):  
Jian Chu ◽  
Ioana Voiculescu ◽  
Ziqian Dong ◽  
Fang Li

Abstract This paper presents an innovative system to monitor the physical soil conditions needed for modern agriculture. The current technique to measure soil properties relies on taking samples from place to place and takes them for laboratory testing. To build up and monitor a data-based system for a large area, such a method is costly and time-consuming. This paper reported our recent work on the development of a passive impedance-loaded surface acoustic wave (SAW) sensor for a low-cost soil condition monitoring system. The SAW sensor will eventually be connected to an antenna and a impedance-based sensor for autonomous soil nutrient sensing. In this research, first, the coupling-of-modes (COM) analysis was performed to simulate the SAW device. The sensors were fabricated with E-beam lithography techniques and tested with different external load resistances. We investigated how the sensor signal changed with the external resistance loading. The experimental results were verified by comparing them with simulation results.


2014 ◽  
Vol 28 (07) ◽  
pp. 1450056 ◽  
Author(s):  
Hua-Lin Cai ◽  
Yi Yang ◽  
Yi-Han Zhang ◽  
Chang-Jian Zhou ◽  
Cang-Ran Guo ◽  
...  

In this paper, a surface acoustic wave (SAW) biosensor with gold delay area on LiNbO 3 substrate detecting DNA sequences is proposed. By well-designed device parameters of the SAW sensor, it achieves a high performance for highly sensitive detection of target DNA. In addition, an effective biological treatment method for DNA immobilization and abundant experimental verification of the sensing effect have made it a reliable device in DNA detection. The loading mass of the probe and target DNA sequences is obtained from the frequency shifts, which are big enough in this work due to an effective biological treatment. The experimental results show that the biosensor has a high sensitivity of 1.2 pg/ml/Hz and high selectivity characteristic is also verified by the few responses of other substances. In combination with wireless transceiver, we develop a wireless receiving and processing system that can directly display the detection results.


Author(s):  
Takamitsu Iwaya ◽  
Shingo Akao ◽  
Kazushi Yamanaka ◽  
Tatsuhiro Okano ◽  
Nobuo Takeda ◽  
...  

Abstract For on-site analysis of surface materials on the moon, planets, and small bodies and for the monitoring of air quality in crewed spacecraft, we have developed a portable gas chromatograph (GC) equipped with a ball surface acoustic wave (SAW) sensor. In this study, we fabricated a 10 cm cube GC that implements the forward flush method using two metal micro-electro-mechanical-system (MEMS) columns coated with different stationary phases in microchannels fabricated by wet etching and diffusion bonding of stainless-steel plates. Using this GC, we succeeded in analyzing 10 kinds of gas within 10 min. In addition, for the application of the ball SAW GC on the ground, we also developed a palm-sized GC with a single metal capillary column and used it in the analysis of the headspace gas of sake. We showed that the ratio of peak areas differed among odorants depending on the brand and brewing process of sake.


2020 ◽  
Vol 20 (11) ◽  
pp. 7145-7150 ◽  
Author(s):  
Eunhyun Kim ◽  
Jinuk Kim ◽  
Seonggyun Ha ◽  
Changsik Song ◽  
Joo-Hyung Kim

The effects of a plasma treatment on the sensing performance of surface acoustic wave (SAW) sensors to detect chemical warfare agents (CWAs) were investigated. SAW sensors designed for an operating frequency of 250 MHz were fabricated using lift-off techniques followed by the deposition of a very thin thiourea (TU) layer as a sensing film on the sensing area of the SAW sensor. To achieve some advantages from the plasma treatment on the surface, such as cleaning, surface activation and modification, a post-plasma treatment was performed on the sensing layer and the sensing performance of the SAW sensor was measured by a comparison with the measured responses, providing different simulant gases through the gas feeding system. The sensitivity test revealed significant improvement in the sensing ability of the SAW sensor to detect DMMP, a simulant of a CWA, but with a relatively longer recovery time. The responses of other simulants at different concentrations and different simulant vapors were compared. The results showed that a plasma treatment on the sensing layer of a SAW device can improve the selectivity and sensitivity to a certain target gas or some volatile organic compounds. Therefore, a plasma treatment will be very useful for improving the selectivity and sensitivity of SAW sensors for the detection of CWAs.


Biosensors ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 4 ◽  
Author(s):  
Fabio Bahos ◽  
Arianee Sainz-Vidal ◽  
Celia Sánchez-Pérez ◽  
José Saniger ◽  
Isabel Gràcia ◽  
...  

In the present work, a novel, portable and innovative eNose composed of a surface acoustic wave (SAW) sensor array based on zeolitic imidazolate frameworks, ZIF-8 and ZIF-67 nanocrystals (pure and combined with gold nanoparticles), as sensitive layers has been tested as a non-invasive system to detect different disease markers, such as acetone, ethanol and ammonia, related to the diagnosis and control of diabetes mellitus through exhaled breath. The sensors have been prepared by spin coating, achieving continuous sensitive layers at the surface of the SAW device. Low concentrations (5 ppm, 10 ppm and 25 ppm) of the marker analytes were measured, obtaining high sensitivities, good reproducibility, short time response and fast signal recovery.


2012 ◽  
Vol 1415 ◽  
Author(s):  
Joonhyung Lee ◽  
Youn-Suk Choi ◽  
Yeolho Lee ◽  
Hun Joo Lee ◽  
Jung Nam Lee ◽  
...  

ABSTRACTWe present a rapid and sensitive surface acoustic wave (SAW) immunosensor that utilizes gold staining as a signal enhancement method. A sandwich immunoassay was performed on sensing area of the SAW sensor, which could specifically capture and detect cardiac markers (cardiac troponin I (cTnI), creatine kinase (CK)-MB, and myoglobin). The analytes in human serum were captured on gold nanoparticles (AuNPs) that were conjugated in advance with detection antibodies. Introduction of these complexes to the capture antibody-immobilized sensor surface resulted in a classic AuNP-based sandwich immunoassay format that has been used for signal amplification. In order to achieve further signal enhancement, a gold staining method was performed, which demonstrated that it is possible to obtain gold staining-mediated signal augmentation on a mass-sensitive device. The sensor response due to gold staining varied as a function of cardiac marker concentration.


Sign in / Sign up

Export Citation Format

Share Document