Free Vibration of a Spinning Stepped Timoshenko Beam

2000 ◽  
Vol 67 (4) ◽  
pp. 839-841 ◽  
Author(s):  
S. D. Yu ◽  
W. L. Cleghorn

The finite element method is employed in this paper to investigate free-vibration problems of a spinning stepped Timoshenko beam consisting of a series of uniform segments. Each uniform segment is considered a substructure which may be modeled using beam finite elements of uniform cross section. Assembly of global equation of motion of the entire beam is achieved using Lagrange’s multiplier method. The natural frequencies and mode shapes are subsequently reduced with the help of linear transformations to a standard eigenvalue problem for which a set of natural frequencies and mode shapes may be easily obtained. Numerical results for an overhung stepped beam consisting of three uniform segments are obtained and presented as an illustrative example. [S00021-8936(01)00101-5]

2016 ◽  
Vol 54 (6) ◽  
pp. 785 ◽  
Author(s):  
Nguyen Tien Khiem ◽  
Nguyen Ngoc Huyen

Free vibration of FGM Timoshenko beam is investigated on the base of the power law distribution of FGM. Taking into account the actual position of neutral plane enables to obtain general condition for uncoupling of axial and flexural vibrations in FGM beam. This condition defines a class of functionally graded beams for which axial and flexural vibrations are completely uncoupled likely to the homogeneous beams. Natural frequencies and mode shapes of uncoupled flexural vibration of beams from the class are examined in dependence on material parameters and slendernes


Author(s):  
J-S Wu ◽  
H-M Chou ◽  
D-W Chen

The dynamic characteristic of a uniform rectangular plate with four boundary conditions and carrying three kinds of multiple concentrated element (rigidly attached point masses, linear springs and elastically mounted point masses) was investigated. Firstly, the closed-form solutions for the natural frequencies and the corresponding normal mode shapes of a rectangular ‘bare’ (or ‘unconstrained’) plate (without any attachments) with the specified boundary conditions were determined analytically. Next, by using these natural frequencies and normal mode shapes incorporated with the expansion theory, the equation of motion of the ‘constrained’ plate (carrying the three kinds of multiple concentrated element) were derived. Finally, numerical methods were used to solve this equation of motion to give the natural frequencies and mode shapes of the ‘constrained’ plate. To confirm the reliability of previous free vibration analysis results, a finite element analysis was also conducted. It was found that the results obtained from the above-mentioned two approaches were in good agreement. Compared with the conventional finite element method (FEM), the approach employed in this paper has the advantages of saving computing time and achieving better accuracy, as can be seen from the existing literature.


2005 ◽  
Vol 128 (2) ◽  
pp. 170-175 ◽  
Author(s):  
C. Mei

In this paper, the differential transformation approach is applied to analyze the free vibration of centrifugally stiffened Timoshenko beam structures. Such structures involve variable coefficients in the governing equations, which in general cannot be solved analytically in closed form. Both the natural frequencies and the mode shapes are obtained using the differential transformation technique. Numerical examples are presented and results are compared with available results in the literature.


2017 ◽  
Vol 17 (01) ◽  
pp. 1750012 ◽  
Author(s):  
Mohammad Rezaiee-Pajand ◽  
Ahmad Aftabi Sani ◽  
Seyed Mojtaba Hozhabrossadati

This paper is concerned with the free vibration of a gabled frame with rotational springs at intersecting joints. Each member of the frame may have different mechanical or geometrical properties. The problem at hand is to solve the gabled frame vibration problem for the natural frequencies by applying the differential transform method (DTM). Special attention is directed towards the derivation of the governing differential equations along with boundary and compatibility conditions of the problem. Some plots of mode shapes are also presented. The problem was also solved by using the finite element method to provide an independent check on the solutions.


2013 ◽  
Vol 20 (3) ◽  
pp. 357-367 ◽  
Author(s):  
Gürkan Şcedilakar

In this study, free vibration analysis of beams carrying a number of various concentrated elements including point masses, rotary inertias, linear springs, rotational springs and spring-mass systems subjected to the axial load was performed. All analyses were performed using an Euler beam assumption and the Finite Element Method. The beam used in the analyses is accepted as pinned-pinned. The axial load applied to the beam from the free ends is either compressive or tensile. The effects of parameters such as the number of spring-mass systems on the beam, their locations and the axial load on the natural frequencies were investigated. The mode shapes of beams under axial load were also obtained.


2020 ◽  
Vol 27 (1) ◽  
pp. 216-225
Author(s):  
Buntheng Chhorn ◽  
WooYoung Jung

AbstractRecently, basalt fiber reinforced polymer (BFRP) is acknowledged as an outstanding material for the strengthening of existing concrete structure, especially it was being used in marine vehicles, aerospace, automotive and nuclear engineering. Most of the structures were subjected to severe dynamic loading during their service life that may induce vibration of the structures. However, free vibration studied on the basalt laminates composite plates with elliptical cut-out and correlation of natural frequency with buckling load has been very limited. Therefore, effects of the elliptical hole on the natural frequency of basalt/epoxy composite plates was performed in this study. Effects of stacking sequence (θ), elliptical hole inclination (ϕ), hole geometric ratio (a/b) and position of the elliptical hole were considered. The numerical modeling of free vibration analysis was based on the mechanical properties of BFRP obtained from the experiment. The natural frequencies as well as mode shapes of basalt laminates composite plates were numerically determined using the commercial program software (ABAQUS). Then, the determination of correlation of natural frequencies with buckling load was carried out. Results showed that elliptical hole inclination and fiber orientation angle induced the inverse proportion between natural frequency and buckling load.


2020 ◽  
Vol 25 (2) ◽  
pp. 29
Author(s):  
Desmond Adair ◽  
Aigul Nagimova ◽  
Martin Jaeger

The vibration characteristics of a nonuniform, flexible and free-flying slender rocket experiencing constant thrust is investigated. The rocket is idealized as a classic nonuniform beam with a constant one-dimensional follower force and with free-free boundary conditions. The equations of motion are derived by applying the extended Hamilton’s principle for non-conservative systems. Natural frequencies and associated mode shapes of the rocket are determined using the relatively efficient and accurate Adomian modified decomposition method (AMDM) with the solutions obtained by solving a set of algebraic equations with only three unknown parameters. The method can easily be extended to obtain approximate solutions to vibration problems for any type of nonuniform beam.


2011 ◽  
Vol 675-677 ◽  
pp. 477-480
Author(s):  
Dong Wei Shu

In this work analytical solutions are developed to study the free vibration of composite beams under axial loading. The beam with a single delamination is modeled as four interconnected Euler-Bernoulli beams using the delamination as their boundary. The continuity and the equilibrium conditions are satisfied between the adjoining beams. The studies show that the sizes and the locations of the delaminations significantly influence the natural frequencies and mode shapes of the beam. A monotonic relation between the natural frequency and the axial load is predicted.


2005 ◽  
Vol 12 (6) ◽  
pp. 425-434 ◽  
Author(s):  
Menglin Lou ◽  
Qiuhua Duan ◽  
Genda Chen

Timoshenko beams have been widely used in structural and mechanical systems. Under dynamic loading, the analytical solution of a Timoshenko beam is often difficult to obtain due to the complexity involved in the equation of motion. In this paper, a modal perturbation method is introduced to approximately determine the dynamic characteristics of a Timoshenko beam. In this approach, the differential equation of motion describing the dynamic behavior of the Timoshenko beam can be transformed into a set of nonlinear algebraic equations. Therefore, the solution process can be simplified significantly for the Timoshenko beam with arbitrary boundaries. Several examples are given to illustrate the application of the proposed method. Numerical results have shown that the modal perturbation method is effective in determining the modal characteristics of Timoshenko beams with high accuracy. The effects of shear distortion and moment of inertia on the natural frequencies of Timoshenko beams are discussed in detail.


2021 ◽  
pp. 0309524X2110116
Author(s):  
Oumnia Lagdani ◽  
Mostapha Tarfaoui ◽  
Mourad Nachtane ◽  
Mourad Trihi ◽  
Houda Laaouidi

In the far north, low temperatures and atmospheric icing are a major danger for the safe operation of wind turbines. It can cause several problems in fatigue loads, the balance of the rotor and aerodynamics. With the aim of improving the rigidity of the wind turbine blade, composite materials are currently being used. A numerical work aims to evaluate the effect of ice on composite blades and to determine the most adequate material under icing conditions. Different ice thicknesses are considered in the lower part of the blade. In this paper, modal analysis is performed to obtain the natural frequencies and corresponding mode shapes of the structure. This analysis is elaborated using the finite element method (FEM) computer program through ABAQUS software. The results have laid that the natural frequencies of the blade varied according to the material and thickness of ice and that there is no resonance phenomenon.


Sign in / Sign up

Export Citation Format

Share Document