Development and Evaluation of a High-Resolution Turbine Pyrometer System

2002 ◽  
Vol 124 (3) ◽  
pp. 439-444 ◽  
Author(s):  
Torsten Eggert ◽  
Bjoern Schenk ◽  
Helmut Pucher

Optical pyrometers provide many advantages over intrusive measuring techniques in determining the spatial and time varying temperature distribution of fast rotating components in gas turbines. This paper describes the development and evaluation of a versatile high-resolution pyrometer system and its application to radial turbine rotor temperature mapping as has been done in a R&D project at the Technical University Berlin under funding from Siemens Power Generation (KWU). The development goal was a pyrometer system with a temporal resolution of 1 μs, a minimum field of view of 1 mm, and a measurement range from 600 to 1500°C. A prototype of the pyrometer system has been built and tested at the small gas turbine test facility of the Technical University Berlin. The system yielded excellent results with respect to measurement uncertainty, resolution, and reliability. Finally, measurement results obtained with the new system on a radial turbine rotor and on a heavy duty industrial gas turbine are compared with measurements conducted with a commercially available turbine pyrometer system.

Author(s):  
Torsten Eggert ◽  
Bjoern Schenk ◽  
Helmut Pucher

Optical pyrometers provide many advantages over intrusive measuring techniques in determining the spatial and time varying temperature distribution of fast rotating components in gas turbines. This paper describes the development and evaluation of a versatile high resolution pyrometer system and its application to radial turbine rotor temperature mapping as has been done in a R&D project at the Technical University Berlin under funding from Siemens Power Generation (KWU). The development goal was a pyrometer system with a temporal resolution of 1μs, a minimum field of view of 1 mm, and a measurement range from 600 to 1500°C. A prototype of the pyrometer system has been built and tested at the small gas turbine test facility of the Technical University Berlin. The system yielded excellent results with respect to measurement uncertainty, resolution, and reliability. Finally, measurement results obtained with the new system on a radial turbine rotor and on a heavy duty industrial gas turbine are compared with measurements conducted with a commercially available turbine pyrometer system.


Author(s):  
C. Rodgers

Inward flow radial and mixed flow turbines are effectively utilized in both small gas turbine auxiliary power units (APU’s) and turbochargers, where moderately high levels of efficiency can be readily attained with simple cast components, less sensitive to blade end-gap clearances than axial turbines. This paper provides an overview of radial turbine performance characteristics for small gas turbine applications as basically influenced by specific speed, velocity ratio, exit flow coefficient, and rotor tip to exducer root mean square (RMS) diameter ratio. Since turbine rotor mass and inertia play important roles in structural integrity and engine acceleration characteristics, the importance of turbine velocity ratio selection upon rotor tip diameter, and cycle performance are discussed. The effects of rotor reaction on radial turbine flow versus pressure characteristics are examined pertinent to engine matching requirements. Engine transient performance is addressed, as influenced by turbine operation towards and beyond runaway conditions.


Author(s):  
Lei Fu ◽  
Yan Shi ◽  
Qinghua Deng ◽  
Zhenping Feng

For millimeter-scale microturbines, the principal challenge is to achieve a design scheme to meet the aerothermodynamics, geometry restriction, structural strength and component functionality requirements while in consideration of the applicable materials, realizable manufacturing and installation technology. This paper mainly presents numerical investigations on the aerothermodynamic design, geometrical design and overall performance prediction of a millimeter-scale radial turbine with rotor diameter of 10mm. Four kinds of turbine rotor profiles were designed, and they were compared with one another in order to select the suitable profile for the micro radial turbine. The leaving velocity loss in micro gas turbines was found to be a large source of inefficiency. The approach of refining the geometric structure of rotor blades and the profile of diffuser were adopted to reduce the exit Mach number thus improving the total-static efficiency. Different from general gas turbines, micro gas turbines are operated in low Reynolds numbers, 104∼105, which has significant effect on flow separation, heat transfer and laminar to turbulent flow transition. Based on the selected rotor profile, several micro gas turbine configurations with different tip clearances of 0.1mm, 0.2mm and 0.3mm, respectively; two different isothermal wall conditions; and two laminar-turbulent transition models were investigated to understand the particular influence of low Reynolds number. These influences on the overall performance of the micro gas turbine were analyzed in details. The results indicate that these configurations should be included and emphasized during the design process of the millimeter-scale micro radial turbines.


Author(s):  
M. Balestri ◽  
D. Cecchini ◽  
V. Cinti

In 1991 ENEL started a research program on gas turbine problems, an important activity which contributed to the realisation of the ENEL Sesta Gas Turbine Test Facility located in Radicondoli, Siena, Italy [1]. The aim of this program was to increase ENEL’s competitiveness in the liberalised energy market dominated by the increasing application of gas turbines in combined cycles and re-powered power stations due to lower costs and the higher performances. The first testing campaigns carried out in Sesta were conducted with conventional fuels such as natural gas and diesel oil. In 1998, ENEL built a specific plant able to simulate alternative fuels by mixing different pure components. Pure gases that can be added to the NG to simulate the syngas are: H2, CO, CO2, N2, steam and ammonia (NH3). Throughout the years, many test campaigns have been conducted at ENEL using industrial gas turbine combustion systems, as well as using a wide variety of fuels and technologies. These tests were carried out for ENEL purpose or for external industrial customers. This paper describes the main characteristics of the ENEL Sesta facility with particular reference to the alternative fuels plants. Two tests carried out at the Sesta facility by ENEL using different industrial combustion systems and non-conventional fuels are also described. The first one refers to the use of H2/CH4 mixtures in a diffusion flame gas turbine combustor. The second one concerns the co-combustion of methane and syngas from biomass in a modified DLN gas turbine combustor.


Author(s):  
Toshiaki Sakurazawa ◽  
Takeo Oda ◽  
Satoshi Takami ◽  
Atsushi Okuto ◽  
Yasuhiro Kinoshita

This paper describes the development of the Dry Low Emission (DLE) combustor for L30A gas turbine. Kawasaki Heavy Industries, LTD (KHI) has been producing relatively small-size gas turbines (25kW to 30MW class). L30A gas turbine, which has a rated output of 30MW, achieved the thermal efficiency of more than 40%. Most continuous operation models use DLE combustion systems to reduce the harmful emissions and to meet the emission regulation or self-imposed restrictions. KHI’s DLE combustors consist of three burners, a diffusion pilot burner, a lean premix main burner, and supplemental burners. KHI’s proven DLE technologies are also adapted to the L30A combustor design. The development of L30 combustor is divided in four main steps. In the first step, Computational Fluid Dynamics (CFD) analyses were carried out to optimize the detail configuration of the combustor. In a second step, an experimental evaluation using single-can-combustor was conducted in-house intermediate-pressure test facility to evaluate the performances such as ignition, emissions, liner wall temperature, exhaust temperature distribution, and satisfactory results were obtained. In the third step, actual pressure and temperature rig tests were carried out at the Institute for Power Plant Technology, Steam and Gas Turbines (IKDG) of Aachen University, achieving NOx emission value of less than 15ppm (O2=15%). Finally, the L30A commercial validation engine was tested in an in-house test facility, NOx emission is achieved less than 15ppm (O2=15%) between 50% and 100% load operation point. L30A field validation engine have been operated from September 2012 at a chemical industries in Japan.


1976 ◽  
Author(s):  
J. D. McHugh ◽  
W. O. Winer ◽  
G. D. Robson

Industrial gas turbine rotors sometimes require a journal bearing in a region of the machine surrounded by compressor discharge air. Ambient temperatures in this region may exceed 600 F (588 K), which poses a challenge to bearing designers. The present paper describes housing design approaches to meeting this challenge, an experimental program to evaluate them, and the application of results to operating field units. The experimental program was carried out in a special test facility on full-size housings for a 14-in. journal bearing in a hot, pressurized environment.


Author(s):  
Glenn McAndrews

Electric starter development programs have been the subject of ASME technical papers for over two decades. Offering significant advantages over hydraulic or pneumatic starters, electric starters are now poised to be the preferred choice amongst gas turbine customers. That they are not now the dominant starter in the field after decades of investment and experimentation is attributable to many factors. As with any new technology, progress is often unsteady, depending on budgets, market conditions, customer buy-in, etc. Additionally, technological advances in the parent technologies, in this case electric motors, can abruptly and rapidly change, further disturbing the best laid introduction plans. It is therefore not too surprising that only recently, is the industry beginning to see the deployment of electric starters on production gas turbines. The earliest adoption occurred on smaller gas turbine units, generally less than 10 MW in power. More recently, gas turbines greater than 10 MWs are being sold with electric starters. The authors expect that regardless of their size or fuel supply, most all future gas turbine users will opt for electric starters. This may even include the “larger” frame machines with power greater than 100 MW. Starting with some past history, this paper will not only summarize past development efforts, it will attempt to examine the current deployment of electric starters throughout the marine and industrial gas turbine landscapes. The large-scale acceptance of electric start systems for both new production and retrofit will depend on the favorable cost/benefit assessment when weighing both first cost and life cycle cost. The current and intense activity in electric vehicle applications is giving rise to even more power dense motors. The paper will look at some of these exciting applications, the installed products, and the technologies behind the products. To what extent these new products may serve the needs of the gas turbine community will be the central question this paper attempts to answer.


Author(s):  
T. L. Ragland

After industrial gas turbines have been in production for some amount of time, there is often an opportunity to improve or “uprate” the engine’s output power or cycle efficiency or both. In most cases, the manufacturer would like to provide these uprates without compromising the proven reliability and durability of the product. Further, the manufacturer would like the development of this “Uprate” to be low cost, low risk and result in an improvement in “customer value” over that of the original design. This paper describes several options available for enhancing the performance of an existing industrial gas turbine engine and discusses the implications for each option. Advantages and disadvantages of each option are given along with considerations that should be taken into account in selecting one option over another. Specific options discussed include dimensional scaling, improving component efficiencies, increasing massflow, compressor zero staging, increasing firing temperature (thermal uprate), adding a recuperator, increasing cycle pressure ratio, and converting to a single shaft design. The implications on output power, cycle efficiency, off-design performance engine life or time between overhaul (TBO), engine cost, development time and cost, auxiliary requirements and product support issues are discussed. Several examples are provided where these options have been successfully implemented in industrial gas turbine engines.


Author(s):  
Xueyou Wen ◽  
Jiguo Zou ◽  
Zheng Fu ◽  
Shikang Yu ◽  
Lingbo Li

Steam-injected gas turbines have a multitude of advantages, but they suffer from the inability to recover precious demineralized water. The present paper describes the test conditions and results of steam injection along with an attempt to achieve water recovery, which were obtained through a series of tests conducted on a S1A-02 small-sized industrial gas turbine. A water recovery device incorporating a compact finned spiral plate cooling condenser equipped with filter screens has been designed for the said gas turbine and a 100% water recovery (based on the design point) was attained.


Author(s):  
O. R. Schmoch ◽  
B. Deblon

The peripheral speeds of the rotors of large heavy-duty gas turbines have reached levels which place extremely high demands on material strength properties. The particular requirements of gas turbine rotors, as a result of the cycle, operating conditions and the ensuing overall concepts, have led different gas turbine manufacturers to produce special structural designs to resolve these problems. In this connection, a report is given here on a gas turbine rotor consisting of separate discs which are held together by a center bolt and mutually centered by radial serrations in a manner permitting expansion and contraction in response to temperature changges. In particular, the experience gained in the manufacture, operation and servicing are discussed.


Sign in / Sign up

Export Citation Format

Share Document