Impact of Perforating on Well Performance and Cumulative Production

2002 ◽  
Vol 124 (3) ◽  
pp. 163-172 ◽  
Author(s):  
Turhan Yildiz

This study presents a simplified method to predict inflow performance of and cumulative production from selectively perforated wells in bounded reservoirs. The model first calculates the pseudo-skin for a fully perforated well penetrating a formation with only unit thickness. Then, perforation pseudo-skin is superimposed on a two-dimensional selectively open completed well model. Using the new model, a sensitivity study is carried out to identify the parameters controlling the well flow rate and total recovery. The sensitivity study includes the impact of shot density, perforation size and length, phasing angle, perforated length/formation thickness ratio, and the degree of formation damage around the wellbore and perforations.

2022 ◽  
Author(s):  
Cornelis Adrianus Veeken ◽  
Yousuf Busaidi ◽  
Amira Hajri ◽  
Ahmed Mohammed Hegazy ◽  
Hamyar Riyami ◽  
...  

Abstract PDO operates about 200 deep gas wells in the X field in the Sultanate of Oman, producing commingled from the Barik gas-condensate and Miqrat lean gas reservoir completed by multiple hydraulic fracturing. Their inflow performance relation (IPR) is tracked to diagnose condensate damage, hydraulic fracture cleanup and differential reservoir pressure depletion. The best IPR data is collected through multi-rate production logging but surface production data serves as an alternative. This paper describes the process of deriving IPR's from production logging and surface production data, and then evaluates 20 years of historic IPR data to quantify the impact of condensate damage and condensate cleanup with progressive reservoir pressure depletion, to demonstrate the massive damage and slow cleanup of hydraulic fractures placed in depleted reservoirs, to show how hydraulic fractures facilitate the vertical cross-flow between isolated reservoir intervals, and to highlight that stress-dependent permeability does not play a major role in this field.


2021 ◽  
Vol 15 (2) ◽  
pp. 184-204
Author(s):  
Tunde Adeosun ◽  
Moruffdeen Adabanija ◽  
Folake Akinpelu

Puzzling circumstance associated with formation damage near wellbore occur frequently, resulting in permeability impairments and increased pressure losses. Potential damage phenomenon usually starts from drilling to completion via production and such mechanisms have been fully considered. Most of the existing tasks to mitigate the near oil wellbore damages involve use of empirical models, conducting experiments, frequent shut down of wells for proper well tests and pressure maintenance are highly expensive and time consuming. Permeability impairments have been simulated by modifying Darcy’s equation to optimize reservoir pressure for improved near wellbore in horizontal wells. The model, transient linear partial differential equation (TLPDE) for impaired permeability is developed and numerically resolved using finite difference method. The model was implemented by writing codes in MATLAB language and the solution obtained was validated using synthetic/ field data. The results obtained for TLPDE model indicated pressure depletion over time. This was also shown for every values of coefficient of anisotropy until 400 days when the anisotropy became insignificant approaching isotropy condition, suggesting permeability impairment. Numerical simulation proved to be effective in simulating near oil wellbore damages. This paper describes the detailed mechanisms of formation damage and provided a numerical approach to model impaired permeability in horizontal wells. This approach allowed us to study the impact of various damage mechanisms related to drilling, completion conditions and significant improvement of near oil wellbore for well performance.


2022 ◽  
Author(s):  
Ruqia Al Shidhani ◽  
Ahmed Al Shueili ◽  
Hussain Al Salmi ◽  
Musallam Jaboob

Abstract Due to a resource optimization and efficiency improvements, wells that are hydraulically fractured in the tight gas Barik Formation of the Khazzan Field in the Sultanate of Oman are often temporarily left shut-in directly following a large scale massive hydraulic fracturing stimulation treatment. Extensive industry literature has often suggested (and reported), that this may result in a significant direct loss of productivity due to the delayed flowback and the resulting fracture conductivity and formation damage. This paper will review the available data from the Khazzan Field address these concerns; indicating where the concerns should and should not necessarily apply. The Barik Formation in the Khazzan Field is an over-pressured gas-condensate reservoir at 4,500 m with gas permeability ranging from 0.1 to 20 mD. The average well after hydraulic fracturing produces 25 MMscfd and 500 bcpd against a wellhead pressure of 4,000 psi. A typical hydraulic fracturing stimulation treatment consists of 14,000 bbl of a borate-crosslinked guar fluid, placing upwards of 1MM Lbs of high conductivity bauxite proppant within a single fracture. In order to assess the potential production loss due to delayed flowback operations, BP Oman performed a suite of formation damage tests including core samples from the Barik reservoir, fracture conductivity considerations and dynamic behaviors. Additionally, normalized production was compared between offset wells that were cleaned-up and put onto production at different times after the hydraulic fracturing operations. Core tests showed a range of fracture conductivities over time with delayed flowback after using the breaker concentrations from actual treatments. As expected, enhanced conductivity was achieved with additional breaker. The magnitude of the conductivity being created in these massive treatments was also demonstrated to be dominant with respect to damage effects. Finally, a normalized comparison of an extensive suite of wells clearly showed no discernible loss of production resulted from any delay in the flowback operations. This paper describes in details the workflow and resulting analysis of the impact of extensive shut-in versus immediate flowback post massive hydraulic fracturing. It indicates that the impact of such events will be limited if the appropriate steps have been taken to minimize the opportunity for damage to occur. Whereas the existing fracturing literature takes the safe stance of indicating that damage will always result from such shut-ins, this paper will demonstrate the limitations of such assumptions and the flexibility that can be demonstrated with real data.


Author(s):  
H-B Hellweg ◽  
M A Crisfield

Three-dimensional material test data for orthotropic laminae are difficult to obtain. Consequently, various simplifications are made for the material properties of individual layers in a finite element analysis, ranging from the assumption of transversely isotropic layers to applying two-dimensional material data in a three-dimensional analysis. In order to investigate the impact and validity of such simplifications, the sensitivity of the stresses and deformations in a finite element analysis on the material properties was investigated.


2021 ◽  
Vol 16 ◽  
Author(s):  
Joice Sophia Ponraj ◽  
Muniraj Vignesh Narayanan ◽  
Ranjith Kumar Dharman ◽  
Valanarasu Santiyagu ◽  
Ramalingam Gopal ◽  
...  

: Increasing energy crisis across the globe requires immediate solutions. Two-dimensional (2D) materials are in great significance because of its application in energy storage and conversion devices but the production process significantly impacts the environment thereby posing a severe problem in the field of pollution control. Green synthesis method provides an eminent way of reduction in pollutants. This article reviews the importance of green synthesis in the energy application sector. The focus of 2D materials like graphene, MoS2, VS2 in energy storage and conversion devices are emphasized based on supporting recent reports. The emerging Li-ion batteries are widely reviewed along with their promising alternatives like Zn, Na, Mg batteries and are featured in detail. The impact of green methods in the energy application field are outlined. Moreover, future outlook in the energy sector is envisioned by proposing an increase in 2D elemental materials research.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 463
Author(s):  
Gopinathan R. Abhijith ◽  
Leonid Kadinski ◽  
Avi Ostfeld

The formation of bacterial regrowth and disinfection by-products is ubiquitous in chlorinated water distribution systems (WDSs) operated with organic loads. A generic, easy-to-use mechanistic model describing the fundamental processes governing the interrelationship between chlorine, total organic carbon (TOC), and bacteria to analyze the spatiotemporal water quality variations in WDSs was developed using EPANET-MSX. The representation of multispecies reactions was simplified to minimize the interdependent model parameters. The physicochemical/biological processes that cannot be experimentally determined were neglected. The effects of source water characteristics and water residence time on controlling bacterial regrowth and Trihalomethane (THM) formation in two well-tested systems under chlorinated and non-chlorinated conditions were analyzed by applying the model. The results established that a 100% increase in the free chlorine concentration and a 50% reduction in the TOC at the source effectuated a 5.87 log scale decrement in the bacteriological activity at the expense of a 60% increase in THM formation. The sensitivity study showed the impact of the operating conditions and the network characteristics in determining parameter sensitivities to model outputs. The maximum specific growth rate constant for bulk phase bacteria was found to be the most sensitive parameter to the predicted bacterial regrowth.


2020 ◽  
Author(s):  
Ike Mokogwu ◽  
Paul Hammonds ◽  
Sam Clare Wilson ◽  
Caitlin Healy ◽  
Ewan Sheach

2015 ◽  
Vol 8 (5) ◽  
pp. 1935-1949 ◽  
Author(s):  
A. Kylling ◽  
N. Kristiansen ◽  
A. Stohl ◽  
R. Buras-Schnell ◽  
C. Emde ◽  
...  

Abstract. Volcanic ash is commonly observed by infrared detectors on board Earth-orbiting satellites. In the presence of ice and/or liquid-water clouds, the detected volcanic ash signature may be altered. In this paper the sensitivity of detection and retrieval of volcanic ash to the presence of ice and liquid-water clouds was quantified by simulating synthetic equivalents to satellite infrared images with a 3-D radiative transfer model. The sensitivity study was made for the two recent eruptions of Eyjafjallajökull (2010) and Grímsvötn (2011) using realistic water and ice clouds and volcanic ash clouds. The water and ice clouds were taken from European Centre for Medium-Range Weather Forecast (ECMWF) analysis data and the volcanic ash cloud fields from simulations by the Lagrangian particle dispersion model FLEXPART. The radiative transfer simulations were made both with and without ice and liquid-water clouds for the geometry and channels of the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The synthetic SEVIRI images were used as input to standard reverse absorption ash detection and retrieval methods. Ice and liquid-water clouds were on average found to reduce the number of detected ash-affected pixels by 6–12%. However, the effect was highly variable and for individual scenes up to 40% of pixels with mass loading >0.2 g m−2 could not be detected due to the presence of water and ice clouds. For coincident pixels, i.e. pixels where ash was both present in the FLEXPART (hereafter referred to as "Flexpart") simulation and detected by the algorithm, the presence of clouds overall increased the retrieved mean mass loading for the Eyjafjallajökull (2010) eruption by about 13%, while for the Grímsvötn (2011) eruption ash-mass loadings the effect was a 4% decrease of the retrieved ash-mass loading. However, larger differences were seen between scenes (standard deviations of ±30 and ±20% for Eyjafjallajökull and Grímsvötn, respectively) and even larger ones within scenes. The impact of ice and liquid-water clouds on the detection and retrieval of volcanic ash, implies that to fully appreciate the location and amount of ash, hyperspectral and spectral band measurements by satellite instruments should be combined with ash dispersion modelling.


Sign in / Sign up

Export Citation Format

Share Document