Application of Computational Fluid Dynamics Analysis for Rotating Machinery—Part II: Labyrinth Seal Analysis

2005 ◽  
Vol 127 (4) ◽  
pp. 820-826 ◽  
Author(s):  
Toshio Hirano ◽  
Zenglin Guo ◽  
R. Gordon Kirk

Labyrinth seals are used in various kinds of turbo machines to reduce internal leakage flow. The working fluid, or the gas passing through the rotor shaft labyrinth seals, often generates driving force components that may increase the unstable vibration of the rotor. It is important to know the accurate rotordynamic force components for predicting the instability of the rotor-bearing-seal system. The major goals of this research were to calculate the rotordynamic force of a labyrinth seals utilizing a commercial CFD program and to further compare those results to an existing bulk flow computer program currently used by major US machinery manufacturers. The labyrinth seals of a steam turbine and a compressor eye seal are taken as objects of analysis. For each case, a 3D model with eccentric rotor was solved to obtain the rotordynamic force components. The leakage flow and rotor dynamics force predicted by CFX TASCFlow are compared with the results of the existing bulk flow analysis program DYNLAB. The results show that the bulk flow program gives a pessimistic prediction of the destabilizing forces for the conditions under investigation. Further research work will be required to fully understand the complex leakage flows in turbo machinery.

Author(s):  
Toshio Hirano ◽  
Zenglin Guo ◽  
R. Gordon Kirk

Labyrinth seals are used in various kinds of turbo machines to reduce internal leakage flow. The working fluid or, the gas passing through the rotor shaft labyrinth seals, often generates driving force components that may increase the unstable vibration of the rotor. It is important to know the accurate rotordynamic force components for predicting the instability of the rotor-bearing-seal system. The major goals of this research was to calculate the rotordynamic force of a labyrinth seals utilizing a commercial CFD program and to further compare those results to an existing bulk flow computer program currently used by major US machinery manufacturers. The labyrinth seals of a steam turbine and a compressor eye seal are taken as objects of analysis. For each case, a 3D model with eccentric rotor was solved to obtain the rotordynamic force components. The leakage flow and rotor dynamics force predicted by CFX TASCFlow are compared with the results the existing bulk flow analysis program DYNLAB. The results show that the bulk flow program gives a pessimistic prediction of the destabilizing forces for the conditions under investigation. Further research work will be required to fully understand the complex leakage flows in turbo machinery.


Author(s):  
Mohana Rao Ramanadham ◽  
Balakrishna Gaja ◽  
Sravan Kumar Kanchanapally

Axial flow compressors of Gas turbines use labyrinth seals to prevent the backflow of the working fluid. However some fluid will leak through the seals due to the clearance provided between the stationery and rotating components and due to the pressure difference across the seals, which affects the efficiency. The geometric shape of the seal plays an important role in influencing the fluid flow through the seals and the leakage rate. The flow through the seals consists of the primary flow and the secondary flow. The secondary flow is the flow through the cavity which is associated with vortex currents and tends to obstruct the primary flow. The geometric shape of the cavity is varied to study its effect on the vortex and resultant leakage flow through the seals. The curvatures of the seal and the distance of the seal tip to the end of the seal are the main parameters considered to arrive at the desired cavity which helps to create the required whirling action and to reduce the velocity of the leakage flow. Gambit software is used for modeling the geometry and Fluent software is used for the analysis. Axi-symmetric pressure based analysis is carried out using the standard κ-ε turbulence. The results of the standard cavity are compared with different variants. The flow velocity and mass flow is studied at different locations of the seal. The results indicate that by optimizing the shape of the seal cavity, the leakage through the labyrinth seal can be reduced.


Author(s):  
R. Gordon Kirk ◽  
Wen Jeng Chen

The analysis of all critical path high pressure machinery must include the account of the influence of the gas labyrinth seals. This paper reviews the prior work on labyrinth seal analysis starting in the 1980’s. The discussion gives a summary of the calibration of the bulk flow analysis to CFD results for a number of conditions. The calibration process was conducted over the last decade and the current paper presents the key results needed to justify the use of this bulk flow analysis for design of machinery with bladed labyrinth seals. A new design tool is discussed with illustrations of the type of seals that can be studied. The dynamic characteristics calculated using the labyrinth seal program can be used in rotordynamic analysis programs to predict the change in system stability produced by the gas labyrinth seals.


2021 ◽  
Author(s):  
Tianhao Wang ◽  
Zhigang Li ◽  
Jun Li

Abstract Labyrinth seals are widely applied in the turbomachinery to control the leakage flow through the clearance between the stationary and rotating components. The fluid excitation induced by the labyrinth seal would deteriorate the stability of turbomachinery shaft. Developing an accurate and rapid prediction approach is crucial for the analysis of the fluid excitation rotordynamics of the labyrinth seal. The objective of this study is to analyze the applicability of leakage models using Bulk-Flow method and investigate the factors affecting the rotordynamic characteristics of the labyrinth seal. An elliptical orbit for rotor whirling was assumed in the one-control-volume Bulk-Flow model considering an isentropic process to predict the frequency-dependent rotordynamic coefficients of the labyrinth seal. The optimal leakage model was determined by comprehensively analyzing the applicability of 72 leakage models. Employing the optimal leakage model in the Bulk-Flow method, the effects of sealing clearance, pressure ratio, preswirl ratio and rotational speed on the rotordynamic characteristics of the labyrinth seal were investigated. The conclusions show that the Bulk-Flow method has an average prediction error of around 10% for the leakage flow rate, cross-coupled stiffness and direct damping when equipped with the optimal leakage model. Increasing preswirl ratio has a significantly destabilizing effect on the rotor stability, while the influence of increasing rotational speed is strongly related to preswirl direction. The effective damping of the labyrinth seal is sensitive to the inlet pressure, but insensitive to the outlet pressure and sealing clearance. The crossover frequency is almost impervious to the inlet pressure, outlet pressure and sealing clearance.


Author(s):  
Donghui Zhang ◽  
Chester Lee ◽  
Michael Cave

Labyrinth seals are widely used in gas compressors to reduce internal leakage and increase the compressor efficiency. Due to the eccentricity between the rotating impeller and the stationary part as *well as the shaft whirling motion, forces are generated when the leakage flow passing through the cavities and the seals. For a lot of applications with high speed and pressure, these forces can drive the system unstable. Thus, predicting the forces accurately become a very important for compressor rotordynamic designs. A lot of research and studies has been done to the seals itself, including bulk flow method, computational fluid dynamic (CFD) and test measurement. The seal and leakage flow interaction forces can be predicted relatively accurate. But very few research treat the seal and cavities as one component interacting with the leakage flow and produce the forces. This paper presents results of CFD investigations on the dynamic coefficients of one typical impeller eye seal and front cavity. The CFD results show that large forces are generated in the front cavity due to circumferential uniform pressure distribution, which caused by the downstream labyrinth seal. The forces generated in the front cavity are more than in the front seal. It was found that the inertia, damping, and stiffness are proportional to average pressure. The cross-coupling stiffness increases with speed with power of 2 while the direct stiffness increases with speed with power of about 1.7.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Yuanqiao Zhang ◽  
Jun Li ◽  
Zhigang Li ◽  
Xin Yan

Abstract Cavity separation baffles can decrease the circumferential swirl intensity of labyrinth seals and increase the seals' rotordynamic characteristics. Compared with conventional baffles, the bristle packs of brush seal baffles can contact the rotor directly, thereby further reducing the swirl intensity of the seal cavity. This paper, using the numerical model combining a multifrequency elliptical whirling orbit model, a porous medium model, and transient Reynolds-averaged Navier–Stokes (RANS) solutions, compares the leakage flow and rotordynamic characteristics of a labyrinth seal with brush-seal baffles (LSBSB) and a labyrinth seal with conventional baffles (LSCB). Ideal air flows into the seal at an inlet preswirl velocity of 0 m/s (or 60 m/s or 100 m/s), total pressure of 690 kPa, and temperature of 14 °C. The outlet static pressure is 100 kPa and the rotational speed is 7500 r/min (surface speed of 66.8 m/s) or 15,000 r/min (surface speed of 133.5 m/s). Numerical results show that the LSBSB possesses the slightly less leakage flow rate than the LSCB due to the flow resistance of the bristle pack to the fluid. Compared with the LSCB, the LSBSB shows a higher positive effective stiffness (Keff) at all considered vibration frequencies and a higher effective damping (Ceff) for most vibration frequencies. What is more, the crossover frequency (fc0) of the LSBSB is significantly lower than that of the LSCB, which means that the LSBSB has a wider frequency range offering positive effective damping. The increasing inlet preswirl velocity and rotational speed only slightly affect the Keff for both seals. The Ceff of two seals decreases as the inlet preswirl velocity rises, especially for the LSCB. The Ceff of the LSCB slightly decreases because of the increasing rotational speed. In contrast, the Ceff of the LSBSB is not sensitive to the changes in rotational speed. In a word, the LSBSB possesses superior rotordynamic performance to the LSCB. Note that this work also investigates the leakage flow and rotordynamic characteristics a labyrinth seal with inclined baffles (LSIB) under the condition of u0 = 60 m/s and n = 15,000 r/min. The inclined baffles of the LSIB are same as the backing plates of LSBSB baffles. The LSIB has rotordynamic coefficients almost equal to the LSCB. Hence, the reason why the LSBSB possesses better rotordynamic performance than that of the LSCB is the flow resistance of bristle packs of brush seal baffles, not the inclination direction variation of baffles.


Author(s):  
Xin Yan ◽  
Xinbo Dai

Abstract Labyrinth seals are widely applied in turbo machines because of their geometrical simplicity, convenient installation, reliable operation and excellent sealing performance. However, in realistic operation process, they usually encounter transient conditions (starting-up, shutting down, etc.) and unavoidable vibrations, which may cause wear in the labyrinth fins. After rubbing, the sealing performance of labyrinth seal will be varied in contrast to the original design. Correspondingly, the aerodynamic efficiency of the turbine stage will be affected by the variation of leakage flow in rubbing process. However, in published literature with respect to the labyrinth seal wear, most of the attention has been paid on revealing sealing performance degradation of labyrinth seal itself. Few studies have been concentrated on the influence of labyrinth seal wear on aerodynamic performance of turbine stages. In such background, the present paper utilizes the numerical methods to investigate the effects of labyrinth seal bending damages on aerodynamic performance of turbine stages. Firstly, under several assumptions, the bending geometrical model was established to describe different degrees of bending damages. Secondly, using three-dimensional RANS simulations, the effects of effective clearance variation due to bending on leakage flow and flow fields in turbine stages were investigated. The overall performance of the turbine stages with teeth-bending damages was also compared with the original design case. The influence of the forward bending and backward bending of labyrinth seals were analyzed and compared with each other. The total-total isentropic efficiency of turbine stages, leakage rates, outlet flow angles, reaction degrees and profile static pressure distributions, entropic distributions and flow fields in seals were obtained and compared to the original design case. The results indicate that the leakage rates in the worn labyrinth seal are quite relevant to the effective clearance, especially for the backward bending damages. As the effective clearances in backward bending cases are increased by 0.2–0.6mm, the isentropic efficiency of turbine stages is decreased by about 1–2%. However, for the forward bending damages, the aerodynamic performance and leakage rates in turbine stages are not sensitive to the effective clearance.


Author(s):  
Ahmed J. M. Gamal ◽  
John M. Vance

The effects of two seal design parameters, namely blade (tooth) thickness and blade profile, on labyrinth seal leakage, as well as the effect of operating a seal in an off-center position, were examined through a series of nonrotating tests. Two reconfigurable seal designs were used, which enabled testing of two-, four-, and six-bladed see-through labyrinth seals with different geometries using the same sets of seal blades. Leakage and cavity pressure measurements were made on each of 23 seal configurations with a in.(101.6mm) diameter journal. Tests were carried out with air as the working fluid at supply pressures of up to 100psia (6.89bar). Experimental results showed that doubling the thickness of the labyrinth blades significantly influenced leakage, reducing the flow rate through the seals by up to 20%. Tests to determine the effect of blade-tip profile produced more equivocal results, with the results of experiments using each of the two test seal designs contradicting each other. Tests on one set of hardware indicated that beveling blades on the downstream side was most effective in limiting leakage, whereas tests on newer hardware with tighter clearances indicated that seals with flat-tipped blades were superior. The test results illustrated that both blade profile and blade thickness could be manipulated so as to reduce seal leakage. However, an examination of the effects of both factors together indicated that the influence of one of these parameters can, to some extent, negate the influence of the other (especially in cases with tighter clearances). finally, for all configurations tested, results showed that leakage through a seal increases with increased eccentricity and that this phenomenon was considerably more pronounced at lower supply pressures.


Author(s):  
Xiaozhi Kong ◽  
Gaowen Liu ◽  
Yuxin Liu ◽  
Zhao Lei ◽  
Longxi Zheng

Labyrinth seals are normally used to control the leakage flow in the compressor stator well. The upstream and downstream rotor-stator cavities of the labyrinth seal can cause complex reverse leakage flows. Remarkable temperature increases and high swirl velocities are observed in this region. In addition, another characteristic of inter-stage labyrinth seal is that large expansions of rotor and stator may easily lead to severely rubbing between the teeth and shrouds, which can shorten the lifetime of the compressor obviously. Experiments were conducted at a rotating compressor inter-stage seal test facility. Different labyrinth rings were tested to compare the performances of inter-stage labyrinth seals with different tooth positions. Leakage flow rates, windage heating and swirl ratios in the outlet cavity were measured at different rotating speeds and pressure ratios. In order to get the working tip clearance accurately, the set up tip clearance was measured with plug gauges, while the radial displacements of rotating disc and stationary casing were measured separately with two high precision laser distance sensors. Numerical simulations were carried out to present the important flow physics responsible for the effects of different tooth positions. In this article, performances of different cases for single, double and triple teeth were investigated and the experimental data provide a new way for the design of inter-stage seals. This method can reduce the leakage flow and avoid severely rubbing at the same time by changing axial positions of teeth in the stator well. When teeth are placed downstream of the model and the tooth pitch is larger, the inter-stage seal would have better sealing performance. For triple teeth cases, N = 3-Case1 has the lowest discharge coefficients, 15% less than that of N = 3-Baseline.


2020 ◽  
Vol 142 (2) ◽  
Author(s):  
Weihang Li ◽  
Shaowen Chen ◽  
Hongyan Liu ◽  
Zhihua Zhou ◽  
Songtao Wang

Abstract Labyrinth seals on both rotor casing and blade tip as an effective method to control the leakage flowrate of the shroud and improve aerodynamic performances in a transonic turbine stage are investigated in this study. Compared to the case without the labyrinth seal structure, the cases with three different types of sealing teeth have been shown to reduce significantly the tip leakage flow by computational simulations. The double-side sealing teeth case reduces the leakage flowrate mleakage/mpassage from 3.4% to 1.3% and increases the efficiency by 1.4%, which is the maximum efficiency improvement of all cases. The sealing structures increase the loss inside the shroud while reducing the momentum mixing between shroud leakage flow and mainstream. Therefore, the circumferential distribution of leakage velocity is changed, as well as the distribution of high-loss zones at turbine outlet. Furthermore, the leakage-vortex loss, which is associated with the blockage effect of sealing structure to the tip leakage flow, gains more improvement than the passage-vortex at the rotor outlet section in double-side seal case. In addition, it has also been found that with a larger gap at tip, the double-side seal has better effects of reducing the leakage flow and improving the aerodynamic performance in the transonic turbine stage.


Sign in / Sign up

Export Citation Format

Share Document