Performance and Development of a Miniature Rotary Shaft Pump

2005 ◽  
Vol 127 (4) ◽  
pp. 752-760 ◽  
Author(s):  
Danny Blanchard ◽  
Phil Ligrani ◽  
Bruce Gale

The development and performance of a novel miniature pump called the rotary shaft pump (RSP) is described. The impeller is made by boring a 1.168 mm hole in one end of a 2.38 mm dia shaft and cutting slots in the side of the shaft at the bottom of the bored hole such that the metal between the slots defines the impeller blades. The impeller blades and slots are 0.38 mm tall. Several impeller designs are tested over a range of operating conditions. Pump performance characteristics, including pressure rise, hydraulic efficiency, slip factor, and flow rate, are presented for several different pump configurations, with maximum flow rate and pressure rise of 64.9ml∕min and 2.1 kPa, respectively, when the working fluid is water. Potential applications include transport of biomedical fluids, drug delivery, total analysis systems, and electronics cooling.

2004 ◽  
Author(s):  
Daniel B. Blanchard ◽  
Phillip M. Ligrani ◽  
Bruce K. Gale

The development and performance of a novel miniature pump called the rotary shaft pump (RSP) is described. The impeller is made by boring a hole in one end of a shaft, and cutting slots in the side of the shaft at the bottom of the bored hole, such that the metal between the slots defines the impeller blades. Several impeller designs are tested over a range of operating conditions. Pump performance characteristics, including pressure rise, efficiency, slip factor, and flow rate are presented for several different pump configurations, with maximum flow rate and pressure rise of 64.9ml/min, and 2.1kPa, respectively, when the working fluid is water. Potential applications include transport of biomedical fluids, drug delivery, total analysis systems, and electronics cooling.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 500
Author(s):  
Jian Chen ◽  
Wenzhi Gao ◽  
Changhai Liu ◽  
Liangguo He ◽  
Yishan Zeng

This study proposes the improvement of the output performance of a resonant piezoelectric pump by adding proof masses to the free ends of the prongs of a U-shaped piezoelectric resonator. Simulation analyses show that the out-of-phase resonant frequency of the developed resonator can be tuned more efficiently within a more compact structure to the optimal operating frequency of the check valves by adjusting the thickness of the proof masses, which ensures that both the resonator and the check valves can operate at the best condition in a piezoelectric pump. A separable prototype piezoelectric pump composed of the proposed resonator and two diaphragm pumps was designed and fabricated with outline dimensions of 30 mm × 37 mm × 54 mm. Experimental results demonstrate remarkable improvements in the output performance and working efficiency of the piezoelectric pump. With the working fluid of liquid water and under a sinusoidal driving voltage of 298.5 Vpp, the miniature pump can achieve the maximum flow rate of 2258.9 mL/min with the highest volume efficiency of 77.1% and power consumption of 2.12 W under zero backpressure at 311/312 Hz, and the highest backpressure of 157.3 kPa under zero flow rate at 383 Hz.


Inventions ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 16 ◽  
Author(s):  
Zine Aidoun ◽  
Khaled Ameur ◽  
Mehdi Falsafioon ◽  
Messaoud Badache

Two-phase ejectors play a major role as refrigerant expansion devices in vapor compression systems and can find potential applications in many other industrial processes. As a result, they have become a focus of attention for the last few decades from the scientific community, not only for the expansion work recovery in a wide range of refrigeration and heat pump cycles but also in industrial processes as entrainment and mixing enhancement agents. This review provides relevant findings and trends, characterizing the design, operation and performance of the two-phase ejector as a component. Effects of geometry, operating conditions and the main developments in terms of theoretical and experimental approaches, rating methods and applications are discussed in detail. Ejector expansion refrigeration cycles (EERC) as well as the related theoretical and experimental research are reported. New and other relevant cycle combinations proposed in the recent literature are organized under theoretical and experimental headings by refrigerant types and/or by chronology whenever appropriate and systematically commented. This review brings out the fact that theoretical ejector and cycle studies outnumber experimental investigations and data generation. More emerging numerical studies of two-phase ejectors are a positive step, which has to be further supported by more validation work.


Author(s):  
Muhammad I. Rashad ◽  
Hend A. Faiad ◽  
Mahmoud Elzouka

This paper presents the operating principle of a novel solar rotary crank-less heat engine. The proposed engine concept uses air as working fluid. The reciprocating motion is converted to a rotary motion by the mean of unbalanced mass and Coriolis effect, instead of a crank shaft. This facilitates the engine scaling and provides several degrees of freedom in terms of structure design and configuration. Unlike classical heat engines (i.e. Stirling), the proposed engine can be fixed to the ground which significantly reduce the generation unit cost. Firstly, the engine’s configuration is illustrated. Then, order analysis for the engine is carried out. The combined dynamics and thermal model is developed using ordinary differential equations which are then numerically solved by Simulink™. The resulting engine thermodynamics cycle is described. It incorporates the common thermodynamics processes (isobaric, isothermal, isochoric processes). Finally, the system behavior and performance are analyzed along with studying the effect of various design parameters on operating conditions such as engine speed, output power and efficiency.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 73 ◽  
Author(s):  
Wei He ◽  
Pengkun Yu ◽  
Zhongting Hu ◽  
Song Lv ◽  
Minghui Qin ◽  
...  

Found in some specific scenarios, drinking water is hard for people to get, such as during expeditions and scientific investigations. First, a novel water generator with only two thermoelectric coolers (Model A) is designed for extracting water from atmospheric vapor and then experimentally studied under a small inlet air flow rate. The impact of operating conditions on surface temperatures of cold/hot sides and water yield are investigated, including the air flow rate and humidity. Alternately, to determine the super performance of Model A, a comparative experiment between Model A and a reference model (Model B) is carried out. The results suggest that both the cold/hot temperature and water yield in Model A increases with the humidity and air flow rate rising. Seen in comparisons of Model A and Model B, it is found that, at an air humidity of 90% and air flow rate of 30 m3/h, the total water yield was increased by 43.4% and the corresponding value reached the maximum increment of 66.7% at an air humidity of 60% and air flow rate of 30 m3/h. These features demonstrate the advantage of Model A especially in low air humidity compared to Model B.


2006 ◽  
Vol 128 (6) ◽  
pp. 1281-1288 ◽  
Author(s):  
Jacob C. Allen ◽  
Phillip M. Ligrani

This paper describes the optimization of rotary shaft pump performance, which is accomplished by comparing the performance of four different centrifugal rotary pump configurations: hooked blades pump, backward-curved blades ID=12.7mm pump, contoured base pump, and backward-curved blades ID=19.1mm pump. Each of these devices utilizes a unique and simple impeller design where the blades are directly integrated into a shaft with an outer diameter of 25.4mm. Presented for each pump are performance data including volumetric flow rate, pump head, and hydraulic efficiency. When pumping water, the most optimal arrangement with the hooked impeller blades produces a maximum flow rate of 3.22L∕min and a pump head as high as 0.97m.


2021 ◽  
Author(s):  
Filippo Cataldo ◽  
Raffaele L. Amalfi ◽  
Jackson B. Marcinichen ◽  
John R. Thome

Abstract The trade-off between efficient cooling and low power consumption is a goal that has always been very desirable in electronics cooling, especially nowadays that power densities of processing units are increasing. Conventional cooling solutions do not have the necessary cooling capacities for these power densities or require significant power consumption. In this study, a novel air-cooled thermosyphon cooling system for desktop computers is presented and experimentally tested. The thermosyphon comprises a vertical micro-channel cold plate as the evaporator and a horizontal air-cooled multiport coil as the condenser. The thermosyphon has a total height of 12 cm and operates with a fan speed of 1700 RPM. The working fluid selected for the thermosyphon loop is R1234ze(E), chosen for its advantageous thermophysical properties and nearly zero-GWP (Global Warming Potential). The test results presented in this paper aim to analyze thermosyphon’s thermal and hydraulic performance by studying the trends of thermal resistance and mass flow rate as a function of different operating conditions. The maximum heat rejection under safe conditions is 250 W, corresponding to a heat flux of about 18 W/cm2.


2001 ◽  
Author(s):  
Hyeun Joong Yoon ◽  
Woo Young Sim ◽  
Sang Sik Yang

Abstract This paper presents the fabrication and test of a phase-change type micropump with two aluminum flap valves. This micropump consists of a pair of Al flap valves and a phase-change type actuator. The actuator is composed of a heater, a silicone rubber diaphragm and a working fluid chamber. The diaphragm is actuated by the vaporization and the condensation of the working fluid. The micropump is fabricated by the anisotropic etching, the boron diffusion and the metal evaporation. The dimension of the micropump is 8.5 mm × 5 mm × 1.7 mm. The forward and the backward flow characteristics of the flap valve illustrate the appropriateness as a check valve. Also, the flow rate of the micropump is measured. When the square wave input voltage of 10 V is applied to the heater, the maximum flow rate of the micropump is 6.1 μl/min at 0.5 Hz and the duty ratio of 60% for zero pressure difference.


Author(s):  
Maoqing Li ◽  
Jiangfeng Wang ◽  
Lin Gao ◽  
Xiaoqiang Niu ◽  
Yiping Dai

Due to environmental constraints, the Organic Rankine Cycle (ORC) is widely used to generate electricity from low grade heat sources. In ORC processes, the working fluid is an organic substance, which has a better thermodynamic performance than water for low grade heat recovery. The design of the turbine which is the key component in the ORC system strongly depends on the operating conditions and on the scale of the facility. This paper presents an experimental study on a prototype of an axial-flow turbine integrated into a regenerative ORC system with R123 as working fluid. The power output is 10kW scale, and the single-stage turbine is selected. The turbine is specially designed and manufactured, and a generator is connected to the turbine directly. In the experiment, the turbine is tested under different inlet pressure conditions (0.6–1.5MPa), different inlet temperature conditions (80–150°C) and different flow rate conditions. The experimental data such as the pressures, temperatures of the turbine inlet and outlet, flow rate, rotational speed, and electrical power generation are analyzed to find their inner relationships. During the test, the turbine rotational speed could reach more than 3010 r/min, while the design rotational speed is 3000 r/min. The isentropic efficiency of the turbine could reach 53%. The maximum electrical power generated by the turbine-generator is 6.57KW. From the test data the peak value of the temperature difference between the inlet and the outlet of the turbine is 53 °C, and the expansion ratio reaches about 11. The computational fluid dynamics (CFD) solvers is also used to analyze the performance of the turbine. The distributions of the pressure, Mach number, and static entropy in the turbine flow passage component are examined and the reasons are also obtained. This study reveals the relationships between the performance of the axial-flow turbine and its inlet and outlet vapor conditions. The experiment results and the CFD results lay a foundation for using this type turbine in the ORC systems which product electrical power from a few KW to MW.


Author(s):  
Han Xu ◽  
Donghai Jin ◽  
Dakun Sun ◽  
Lin Du ◽  
Xingmin Gui ◽  
...  

In this paper, the effect of the rotor–stator axial spacing is investigated in an axial pump with the working fluid of water. The pressure-rise performance was tested at a range of flow rates. Results indicate that decreased axial spacing generates improved hydraulic head, especially when the flow rate is low. Particle image velocimetry measurement was performed and flow fields for five rotor phases were obtained in a low flow rate condition. Particle image velocimetry results demonstrate that the stator inlet flow is both affected by the wake of the rotor and the existence of the stator. As the axial spacing gets close, the incidence angle of the stator decreases and the flow separation on the suction side is restrained, and therefore the pressure rise ability is improved.


Sign in / Sign up

Export Citation Format

Share Document