The Fabrication and Test of a Phase-Change Micropump

Author(s):  
Hyeun Joong Yoon ◽  
Woo Young Sim ◽  
Sang Sik Yang

Abstract This paper presents the fabrication and test of a phase-change type micropump with two aluminum flap valves. This micropump consists of a pair of Al flap valves and a phase-change type actuator. The actuator is composed of a heater, a silicone rubber diaphragm and a working fluid chamber. The diaphragm is actuated by the vaporization and the condensation of the working fluid. The micropump is fabricated by the anisotropic etching, the boron diffusion and the metal evaporation. The dimension of the micropump is 8.5 mm × 5 mm × 1.7 mm. The forward and the backward flow characteristics of the flap valve illustrate the appropriateness as a check valve. Also, the flow rate of the micropump is measured. When the square wave input voltage of 10 V is applied to the heater, the maximum flow rate of the micropump is 6.1 μl/min at 0.5 Hz and the duty ratio of 60% for zero pressure difference.

Author(s):  
Xiaoming Chen ◽  
Yuchuan Zhu ◽  
Travis Wiens ◽  
Doug Bitner ◽  
Minghao Tai ◽  
...  

The inertance hydraulic converter relies on fluid inertance to modulate flow or pressure and is considered to be a competitive alternative to the conventional proportional hydraulic system due to its potential advantage in efficiency. As the quantification of fluid inertance, the suction flow characteristic is the crucial performance indicator for efficiency improvement. To explore the discrepancy between the passive inertance hydraulic converter featured by the check valve and the active inertance hydraulic converter driven by an equivalent 2/3 way fast switching valve in regard to suction flow characteristics, analytical models of the inertance hydraulic converters were established in MATLAB/Simulink. The validated models of the respective suction components were incorporated in the overall analytical models and their suction flow characteristics were theoretically and experimentally discussed. The analytical predictions and experimental measurements for the current configurations indicated that the active inertance hydraulic converter yields a larger transient suction flow rate than that of the passive inertance hydraulic converter due to the difference of the respective suction components. The suction flow characteristic can be modulated using the supply pressure and duty cycle, which was confirmed by experimental measurements. In addition, the suction flow characteristics are heavily affected by the resistance of the suction flow passage and switching frequency. There is a compromise between the resistance and switching frequency for inertance hydraulic converters to achieve large suction flow rate.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 500
Author(s):  
Jian Chen ◽  
Wenzhi Gao ◽  
Changhai Liu ◽  
Liangguo He ◽  
Yishan Zeng

This study proposes the improvement of the output performance of a resonant piezoelectric pump by adding proof masses to the free ends of the prongs of a U-shaped piezoelectric resonator. Simulation analyses show that the out-of-phase resonant frequency of the developed resonator can be tuned more efficiently within a more compact structure to the optimal operating frequency of the check valves by adjusting the thickness of the proof masses, which ensures that both the resonator and the check valves can operate at the best condition in a piezoelectric pump. A separable prototype piezoelectric pump composed of the proposed resonator and two diaphragm pumps was designed and fabricated with outline dimensions of 30 mm × 37 mm × 54 mm. Experimental results demonstrate remarkable improvements in the output performance and working efficiency of the piezoelectric pump. With the working fluid of liquid water and under a sinusoidal driving voltage of 298.5 Vpp, the miniature pump can achieve the maximum flow rate of 2258.9 mL/min with the highest volume efficiency of 77.1% and power consumption of 2.12 W under zero backpressure at 311/312 Hz, and the highest backpressure of 157.3 kPa under zero flow rate at 383 Hz.


2020 ◽  
Vol 8 (2) ◽  
pp. 10-14
Author(s):  
S.S. Vasyliv ◽  
◽  
V.S. Zhdanov ◽  
M.V. Yevseyenko ◽  
◽  
...  

The problem of implementing the detonation mode of fuel combustion in thermal propulsion systems has been widely studied last decade. There are many works on fundamental and applied research on pulsating detonation. Solid propellant detonation engines can develop significant forces for a short time at low structural masses, and therefore they are ideal for auxiliary systems for the removal of separated rocket parts. In addition, detonation processes can be used to create control forces for correcting the trajectory of aircraft. All these facts determine the relevance of the area of work. For studying detonation installations, it is necessary to create test stands, but the design of test installations is an urgent and complex optimization problem. It is advisable to solve this problem with the help of computer simulation. In the existing experimental methods, for designing, it is necessary to determine in advance the geometric parameters of receivers and pipelines that provide the necessary gas consumption for firing tests of detonation rocket engines. The work is devoted to the development of a method for determining the flow characteristics of a receiver with a pipeline of complex configuration based on the constructed model of the stand. Based on the initial data, a computer simulation of the air leakage process from the receiver was carried out, for which the Solid Works software package was used. The places of pressure drop, maximum flow rate, and air mass flow are determined. The low value of the flow rate factor is due to the complex configuration of the pipeline with numerous bends and two bellows. Comparison of calculation results with experimental data was held. The difference between the experimental and calculated values does not exceed 3.6%. The obtained information is used to select the required value of the oxidizer excess coefficient during firing tests of detonation rocket engine models. Keywords: flow rate, gas leakage, receiver, model.


Micromachines ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 758
Author(s):  
Zhi-xin Gao ◽  
Ping Liu ◽  
Yang Yue ◽  
Jun-ye Li ◽  
Hui Wu

Although check valves have attracted a lot of attention, work has rarely been completed done when there is a compressible working fluid. In this paper, the swing check valve and the tilting check valve flowing high-temperature compressible water vapor are compared. The maximum Mach number under small valve openings, the dynamic opening time, and the hydrodynamic moment acting on the valve disc are chosen to evaluate the difference between the two types of check valves. Results show that the maximum Mach number increases with the decrease in the valve opening and the increase in the mass flow rate, and the Mach number and the pressure difference in the tilting check valve are higher. In the swing check valve, the hydrodynamic moment is higher and the valve opening time is shorter. Furthermore, the valve disc is more stable for the swing check valve, and there is a periodical oscillation of the valve disc in the tilting check valve under a small mass flow rate.


2005 ◽  
Vol 127 (4) ◽  
pp. 752-760 ◽  
Author(s):  
Danny Blanchard ◽  
Phil Ligrani ◽  
Bruce Gale

The development and performance of a novel miniature pump called the rotary shaft pump (RSP) is described. The impeller is made by boring a 1.168 mm hole in one end of a 2.38 mm dia shaft and cutting slots in the side of the shaft at the bottom of the bored hole such that the metal between the slots defines the impeller blades. The impeller blades and slots are 0.38 mm tall. Several impeller designs are tested over a range of operating conditions. Pump performance characteristics, including pressure rise, hydraulic efficiency, slip factor, and flow rate, are presented for several different pump configurations, with maximum flow rate and pressure rise of 64.9ml∕min and 2.1 kPa, respectively, when the working fluid is water. Potential applications include transport of biomedical fluids, drug delivery, total analysis systems, and electronics cooling.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4699 ◽  
Author(s):  
M. M. Mousa ◽  
A. M. Bayomy ◽  
M. Z. Saghir

Phase change materials (PCM) utilization in energy storage systems represents a point of interest and attraction for the researchers to reduce greenhouse gas emissions. PCM have been used widely on the interior or exterior walls of the building application to optimize the energy consumption during heating and cooling periods. Meanwhile, ground source heat pump (GSHP) gained its popularity because of the high coefficient of performance (COP) and low running cost of the system. However, GSHP system requires a stand-by heat pump during peak loads. This study will present a new concept of energy piles that used PCM in the form of enclosed tube containers. A lab-scaled foundation pile was developed to examine the performance of the present energy pile, where three layers of insulation replaced the underground soil to focus on the effect of PCM. The investigation was conducted experimentally and numerically on two identical piles with and without PCM. Moreover, a flow rate parametric study was conducted to study the effect of the working fluid flow rate on the amount of energy stored and released at each model. Finally, a comprehensive Computational fluid dynamic (CFD) model was developed and compared with the experimental results. There was a good agreement between the experimental measurements and the numerical predictions. The results revealed that the presence of PCM inside the piles increased not only the charging and discharging capacity but also the storage efficiency of the piles. It was found that PCM enhances the thermal response of the concrete during cooling and heating processes. Although increasing the flow rate increased charging and discharging capacity, the percentage of energy stored/released was insignificant compared to the flow rate increasing percentage.


2013 ◽  
Vol 284-287 ◽  
pp. 2032-2036
Author(s):  
Chiang Ho Cheng ◽  
Yi Pin Tseng

This paper aims to present the design, fabrication and test of a novel piezoelectrically actuated, check valve embedded micropump having the advantages of miniature size, light weight and low power consumption. The micropump consists of a piezoelectric actuator, a stainless steel chamber layer with membrane, two stainless steel channel layers with two valve seats, and a nickel check valve layer with two bridge-type check valves. The check valve layer was fabricated by nickel electroforming process on a stainless steel substrate. The chamber and the channel layer were made of the stainless steel manufactured using the lithography and etching process based on MEMS fabrication technology. The effects of check valve thickness, operating frequency and back pressure on the flow rate of the micropump are investigated. The micropump with check valve 20 μm in thickness obtained higher output values under the sinusoidal waveform of 120 Vpp and 160 Hz. The maximum flow rate and backpressure are 1.82 ml/min and 32 kPa, respectively.


Author(s):  
Sean T. Ricks ◽  
John R. Lewandowski ◽  
Emmanuel G. Lim ◽  
Dawn M. Wendell ◽  
Amos G. Winter

When developing a first-generation product, an iterative approach often yields the shortest time-to-market. In order to optimize its performance, however, a fundamental understanding of the theory governing its operation becomes necessary. This paper details the optimization of the Tata Swach, a consumer water purifier produced for India. The primary objective of the work was to increase flow rate while considering other factors such as cost, manufacturability, and efficacy. A mathematical model of the flow characteristics through the filter was developed. Based on this model, a design tool was created to allow designers to predict flow behavior without prototyping, significantly reducing the necessity of iteration. Sensitivity analysis was used to identify simple ways to increase flow rate as well as potential weak points in the design. Finally, it was demonstrated that maximum flow rate can be increased by 50% by increasing the diameter of a flow-restricting feature while simultaneously increasing the length of the active purification zone. This can be accomplished without significantly affecting cost, manufacturability, and efficacy.


Perfusion ◽  
2003 ◽  
Vol 18 (1) ◽  
pp. 61-65 ◽  
Author(s):  
David Jegger ◽  
Antonio F Corno ◽  
Antonio Mucciolo ◽  
Giuseppe Mucciolo ◽  
Yves Boone ◽  
...  

During cardiopulmonary bypass (CPB), venous drainage may be impeded due to small vessel and cannula size or chattering, thus, blood return to the heart-lung machine is reduced. We designed a self-expandable prototype cannula, which is able to maintain the vein open and overcome this problem and analysed its performance capability. This prototype and several other cannulae were tested using an access vessel diameter of 7 mm. An in vitro circuit was set up with a 10 mm penrose latex tube simulating the patient’s vein placed between the patient preload reservoir and the cannula, encasing the cannula’s inlet(s). Maximum flow rate was determined for passive venous drainage (PVD) at preloads (P) of 2 and 4 mmHg. We compared these results to three classic single-stage venous cannulae: basket tip, thoracic drain and percutaneous tip. By comparing the other cannulae to the prototype, under PVD conditions and a central venous pressure (CVP) of 2 mmHg, the prototype cannula’s flow rate (1.329 /0.04 L/min) outperformed the basket type (the best performing comparator) (1.029 /0.08 L/min) by 23% (p B /0.005). When the preload was increased to 4 mmHg under PVD conditions, the same trend was noted with the prototype cannula (1.659 /0.05 L/min), outperforming the basket cannula’s value (1.269 /0.05 L/min) by 24% (p B /0.001). This new cannula design provides superior flow characteristics, under all test conditions, compared to the classic single-stage venous cannulae used for paediatric CPB surgery.


Author(s):  
Arvind Chandrasekaran ◽  
Muthukumaran Packirisamy

In this work, a Piezo actuated Valveless micropump is proposed for applications in Micro-Total Analysis Systems (μTAS) and Lab-on-a-Chip. Flow rectification in the micropump has been brought about with the use of a diffuser element. The device is fabricated on PDMS-Glass substrate with the glass acting as the diaphragm. A PZT disc is integrated with the setup for actuation. The micropump has been characterized for its dynamic behavior, flow characteristics, and pressure. It was found that the maximum flow rate for the micropump was obtained at low frequency which makes it usable for practical μTAS applications.


Sign in / Sign up

Export Citation Format

Share Document