scholarly journals Improving Output Performance of a Resonant Piezoelectric Pump by Adding Proof Masses to a U-Shaped Piezoelectric Resonator

Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 500
Author(s):  
Jian Chen ◽  
Wenzhi Gao ◽  
Changhai Liu ◽  
Liangguo He ◽  
Yishan Zeng

This study proposes the improvement of the output performance of a resonant piezoelectric pump by adding proof masses to the free ends of the prongs of a U-shaped piezoelectric resonator. Simulation analyses show that the out-of-phase resonant frequency of the developed resonator can be tuned more efficiently within a more compact structure to the optimal operating frequency of the check valves by adjusting the thickness of the proof masses, which ensures that both the resonator and the check valves can operate at the best condition in a piezoelectric pump. A separable prototype piezoelectric pump composed of the proposed resonator and two diaphragm pumps was designed and fabricated with outline dimensions of 30 mm × 37 mm × 54 mm. Experimental results demonstrate remarkable improvements in the output performance and working efficiency of the piezoelectric pump. With the working fluid of liquid water and under a sinusoidal driving voltage of 298.5 Vpp, the miniature pump can achieve the maximum flow rate of 2258.9 mL/min with the highest volume efficiency of 77.1% and power consumption of 2.12 W under zero backpressure at 311/312 Hz, and the highest backpressure of 157.3 kPa under zero flow rate at 383 Hz.

Micromachines ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 735 ◽  
Author(s):  
Xiaolong Zhao ◽  
Dingxuan Zhao ◽  
Jiantao Wang ◽  
Tao Li

As piezoelectric pumps are used in more fields, they are gradually failing to meet the application requirements due to their low output performance. Therefore, improving the output performance of piezoelectric pumps helps to expand their applications. This paper argued that the dynamic load of liquid in the inlet and outlet pipelines was an important factor that weakened the performance of piezoelectric pumps. Therefore, in order to reduce the dynamic load, it was proposed to replace the conventional piezoelectric pump inlet and outlet by an elastic inlet and outlet. After introducing the structure and working principle of elastic inlet and outlet, the mechanism of reducing the dynamic load by elastic inlet and outlet was analyzed. Then, the influence of the elastic cavity height on the performance of the piezoelectric pump was studied from both fluid simulation and theoretical analysis. Finally, several prototypes were made. The effectiveness of the elastic inlet and outlet on improving the performance of the prototype and the effect of the elastic cavity height on the performance of the prototype were tested, respectively. The test results showed that the elastic inlet and outlet effectively improved the flow rate and output backpressure without increasing the maximum output backpressure. The maximum flow rate of the pump system without load was increased by 36%. In addition, the elastic cavity height adversely affected the flow rate and output backpressure of the prototypes, but had no effect on the maximum output backpressure. In summary, the elastic inlet and outlet can effectively increase the output performance of the piezoelectric pump, but the design height should be appropriately reduced.


2021 ◽  
Vol 11 (7) ◽  
pp. 2909
Author(s):  
Weiqing Huang ◽  
Liyi Lai ◽  
Zhenlin Chen ◽  
Xiaosheng Chen ◽  
Zhi Huang ◽  
...  

Imitating the structure of the venous valve and its characteristics of passive opening and closing with changes in heart pressure, a piezoelectric pump with flexible valves (PPFV) was designed. Firstly, the structure and the working principle of the PPFV were introduced. Then, the flexible valve, the main functional component of the pump, was analyzed theoretically. Finally, an experimental prototype was manufactured and its performance was tested. The research proves that the PPFV can achieve a smooth transition between valved and valveless by only changing the driving signal of the piezoelectric (PZT) vibrator. The results demonstrate that when the driving voltage is 100 V and the frequency is 25 Hz, the experimental flow rate of the PPFV is about 119.61 mL/min, and the output pressure is about 6.16 kPa. This kind of pump can realize the reciprocal conversion of a large flow rate, high output pressure, and a small flow rate, low output pressure under the electronic control signal. Therefore, it can be utilized for fluid transport and pressure transmission at both the macro-level and the micro-level, which belongs to the macro–micro combined component.


Author(s):  
Yi Hou ◽  
Lipeng He ◽  
Zheng Zhang ◽  
Baojun Yu ◽  
Hong Jiang ◽  
...  

This paper focuses on a new structure in the valveless piezoelectric pump, which has a combination structure of the conical flow channel and two fishtail-shaped bluffbodies in the chamber of the pump. The fishtail-shaped bluffbody is inspired by the shape of the swimming fish to diminish the backflow and optimize the performance of the pump. The performance is studied by changing the shape and size of the inlet and outlet, the bluff bodies’ height and the space between two bluff bodies. The results show that the 3 mm × 3 mm square inlet, 3 mm diameter round outlet, 3 mm height of bluffbodies, 6.8 mm pitch of bluffbodies has a best performance in all 10 prototypes, which implements a maximum flow rate of 87.5 ml/min at 170 V 40 Hz with a noise of 42.6 dB. This study makes a preliminary investigation and theoretical explanation for the subsequent optimization of this structure, improved the performance of the valveless piezoelectric pump, broaden the thinking of the design for the bluffbody for better performance of the valveless piezoelectric pump.


1999 ◽  
Author(s):  
C. Channy Wong ◽  
Douglas R. Adkins ◽  
Ronald P. Manginell ◽  
Gregory C. Frye-Mason ◽  
Peter J. Hesketh ◽  
...  

Abstract An integrated microsystem to detect traces of chemical agents (μChemLab™) is being developed at Sandia for counter-terrorism and nonproliferation applications. This microsystem has two modes of operation: liquid and gas phase detection. For the gas phase detection, we are integrating these critical components: a preconcentrator for sample collection, a gas chromatographic (GC) separator, a chemically selective flexural plate wave (FPW) array mass detector, and a latching valve onto a single chip. By fabricating these components onto a single integrated system (μChemLab™ on a chip), the advantages of reduced dead volume, lower power consumption, and smaller physical size can be realized. In this paper, the development of a latching valve will be presented. The key design parameters for this latching valve are: a volumetric flow rate of 1 mL/min, a maximum hold-off pressure of 40 kPa (6 psi), a relatively low power, and a fast response time. These requirements have led to the design of a magnetically actuated latching relay diaphragm valve. Magnetic actuation is chosen because it can achieve sufficient force to effectively seal against back pressure and its power consumption is relatively low. The actuation time is rapid, and valve can latch in either an open or closed state. A corrugated parylene membrane is used to separate the working fluid from internal components of the valve. Corrugations in the parylene ensure that the diaphragm presents minimum resistance to the actuator for a relativley large deflection. Two different designs and their performance of the magnetic actuation have been evaluated. The first uses a linear magnetic drive mechanism, and the second uses a relay mechanism. Preliminary results of the valve performance indicates that the required driving voltage is about 10 volts, the measured flow rate is about 50 mL/min, and it can hold off pressure of about 5 psi (34 kPa). Latest modifications of the design show excellent performance improvements.


2005 ◽  
Vol 127 (4) ◽  
pp. 752-760 ◽  
Author(s):  
Danny Blanchard ◽  
Phil Ligrani ◽  
Bruce Gale

The development and performance of a novel miniature pump called the rotary shaft pump (RSP) is described. The impeller is made by boring a 1.168 mm hole in one end of a 2.38 mm dia shaft and cutting slots in the side of the shaft at the bottom of the bored hole such that the metal between the slots defines the impeller blades. The impeller blades and slots are 0.38 mm tall. Several impeller designs are tested over a range of operating conditions. Pump performance characteristics, including pressure rise, hydraulic efficiency, slip factor, and flow rate, are presented for several different pump configurations, with maximum flow rate and pressure rise of 64.9ml∕min and 2.1 kPa, respectively, when the working fluid is water. Potential applications include transport of biomedical fluids, drug delivery, total analysis systems, and electronics cooling.


2019 ◽  
Vol 9 (18) ◽  
pp. 3881 ◽  
Author(s):  
Ming Tang ◽  
Qibo Bao ◽  
Jianhui Zhang ◽  
Qingshuang Ning ◽  
Chaobin Chen ◽  
...  

In this paper, a streamlined flow tube valveless piezoelectric pump (SLFT PZT pump) is proposed to modify the single flow trend and improve the fluid flow stability. Firstly, the structural and working principle of the streamlined flow tube, which accounts for changing the flow trend and improving the flow stability, were analyzed. The flow resistance and flow rate equations were established. Secondly, the pressure and velocity fields of the tube were simulated. These simulated results were consistent with the theoretical results. Thirdly, the flow resistance of the flow tube was tested with pressure differences of 1000 Pa, 1200 Pa, 1400 Pa and 1600 Pa respectively. The trend of the result curves was consistent with the simulated results. The amplitude-frequency relationship and the flow-rate-frequency relationship were also tested, both result curves highly corelate. The maximum amplitude was 0.228 mm (10 Hz, 120 V), and the maximum flow rate was 17.01 mL/min (10 Hz, 100 V). Finally, the theoretical flow rate of the SLFT PZT pump was calculated at 100 V and 120 V. These results roughly fitted with the experimental results. The streamlined flow tube could change the internal flow trend that remarkably improved the flow stability. Therefore, it promoted the application of the valveless PZT pump in living cells, biomedical and polymer delivery.


2001 ◽  
Author(s):  
Hyeun Joong Yoon ◽  
Woo Young Sim ◽  
Sang Sik Yang

Abstract This paper presents the fabrication and test of a phase-change type micropump with two aluminum flap valves. This micropump consists of a pair of Al flap valves and a phase-change type actuator. The actuator is composed of a heater, a silicone rubber diaphragm and a working fluid chamber. The diaphragm is actuated by the vaporization and the condensation of the working fluid. The micropump is fabricated by the anisotropic etching, the boron diffusion and the metal evaporation. The dimension of the micropump is 8.5 mm × 5 mm × 1.7 mm. The forward and the backward flow characteristics of the flap valve illustrate the appropriateness as a check valve. Also, the flow rate of the micropump is measured. When the square wave input voltage of 10 V is applied to the heater, the maximum flow rate of the micropump is 6.1 μl/min at 0.5 Hz and the duty ratio of 60% for zero pressure difference.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1712
Author(s):  
Yongming Yao ◽  
Zhicong Zhou ◽  
Huiying Liu ◽  
Tianyu Li ◽  
Xiaobin Gao

In order to reduce backflow and improve output performance, a valveless piezoelectric pump with a reverse diversion channel was produced. The channel was designed based on the structure of the Tesla valve, which has no moving parts and can produce a high-pressure drop during reverse flow. Therefore, this special flowing channel can reduce the backflow of a valveless piezoelectric pump, which has the characteristic of one-way conduction. This work first revealed the relationship between the main structural parameters of the Tesla valve and the kinetic energy difference of liquid. Then, by using simulation software, the structure was verified to have the characteristics of effective suppression of the backflow of valveless piezoelectric pumps. Through setting multiple simulations, some important parameters that include the optimal height between the straight channels (H), the optimal angle (α) between the straight channel and the inclined channel, as well as the optimal radius (R) of the channel were confirmed. Finally, a series of prototypes were fabricated to test the output performance of this valveless piezoelectric pump. Comparing the experimental results, the optimal parameters of the Tesla valve were determined. The results suggest that when the parameters of the Tesla valve were H = 8 mm, α = 30°, and R = 3.4 mm, the output performance of this piezoelectric pump became best, which had a maximum flow rate of 79.26 mL/min with a piezoelectric actuator diameter of 35 mm, an applied voltage of 350 Vp-p, and a frequency of 28 Hz. The effect of this structure in reducing the return flow can be applied to fields such as agricultural irrigation.


2013 ◽  
Vol 442 ◽  
pp. 386-391
Author(s):  
Ye Ming Sun ◽  
Guang Ming Cheng ◽  
Ping Zeng

Aiming at driving requirements of single-chamber and single-vibrator piezoelectric pump, a driving power supply is designed. Firstly, the power supply utilizes signal generating circuit to obtain a tiny sine signal with adjustable amplitude and frequency. Then it utilizes high-voltage amplifying circuit and power amplifying circuit to gain high voltage and large current to drive the piezoelectric pump. Prototype of driving power supply is manufactured and its output performance is tested. Experimental results show that, in power supply, the driving signal output approaches sine signal in waveform, and controlling varies of piezoelectric pump (driving voltage and frequency) can be adjusted independently and continuously. Within operating frequency range of piezoelectric pump, the driving voltage is up to 170V. The driving power supply designed meets the driving requirements of the piezoelectric pump, and has advantages of small size, light weight, and low cost.


Micromachines ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 25
Author(s):  
Jian-Chiun Liou ◽  
Chih-Wei Peng ◽  
Philippe Basset ◽  
Zhen-Xi Chen

The system designed in this study involves a three-dimensional (3D) microelectronic mechanical system chip structure using DNA printing technology. We employed diverse diameters and cavity thickness for the heater. DNA beads were placed in this rapid array, and the spray flow rate was assessed. Because DNA cannot be obtained easily, rapidly deploying DNA while estimating the total amount of DNA being sprayed is imperative. DNA printings were collected in a multiplexer driver microelectronic mechanical system head, and microflow estimation was conducted. Flow-3D was used to simulate the internal flow field and flow distribution of the 3D spray room. The simulation was used to calculate the time and pressure required to generate heat bubbles as well as the corresponding mean outlet speed of the fluid. The “outlet speed status” function in Flow-3D was used as a power source for simulating the ejection of fluid by the chip nozzle. The actual chip generation process was measured, and the starting voltage curve was analyzed. Finally, experiments on flow rate were conducted, and the results were discussed. The density of the injection nozzle was 50, the size of the heater was 105 μm × 105 μm, and the size of the injection nozzle hole was 80 μm. The maximum flow rate was limited to approximately 3.5 cc. The maximum flow rate per minute required a power between 3.5 W and 4.5 W. The number of injection nozzles was multiplied by 100. On chips with enlarged injection nozzle density, experiments were conducted under a fixed driving voltage of 25 V. The flow curve obtained from various pulse widths and operating frequencies was observed. The operating frequency was 2 KHz, and the pulse width was 4 μs. At a pulse width of 5 μs and within the power range of 4.3–5.7 W, the monomer was injected at a flow rate of 5.5 cc/min. The results of this study may be applied to estimate the flow rate and the total amount of the ejection liquid of a DNA liquid.


Sign in / Sign up

Export Citation Format

Share Document