scholarly journals Grid Trouble in Paradise

2015 ◽  
Vol 137 (12) ◽  
pp. 42-47
Author(s):  
Tom Gibson

This article discusses why Hawaii needs to find new ways to handle the influx of solar power. In Hawaii, rooftop solar panels are popping up everywhere. However, the solar boom has also created some complications, including sudden changes or disruptions in the system or problems at the distribution side, when there are lots of PV connected at the rooftops. Electrical loads in homes fluctuate all the time as power-hungry appliances like air conditioners and water heaters turn on and off, resulting in a high probability of low load and too much power. Power can go back through the nearby substation transformer and cause a rise in the voltage. That the state is split into several small islands further complicates matters. Another challenge unique to Hawaii is that each island in Hawaii is its own independent grid, and there are no neighbors to depend on for power.

2020 ◽  
Vol 17 (7) ◽  
pp. 3136-3140
Author(s):  
Suprianto

The continuity of electric power service is a major factor determining electrical customer satisfaction. Research on the implementation of the ATS system between solar cells and grid system as a supplier of electrical power to household electrical loads for continuity and savings in electricity consumption costs aims to design an ATS system for delivering electrical power to the load system that can maintain the continuity of the supply of electricity, reducing costs electricity consumption while reducing dependence on grid electricity supply. The specific target to be achieved in this research is to design an ATS system for the distribution of electric power between grid system and solar power system and find out the cost of savings while maintaining continuity of electricity services, so that electricity consumers can benefit from technical and economic aspects. The method used in this study is an experimental method that is designing an electrical power supply ATS system to get the results of a good design and as planned. The equipment used is solar panels, relays, timers, inverters, household electrical loads, contactors, electrical measuring devices, temperature gauges and light intensity, battery systems and control panels. The results showed that the automatic transfer switch must attention to the design of an accurate and meticulous to avoid damage to the inverter. So that continuity of service of electric power is maintained. Electric power service using a solar cell system with 2 units of 100 Ah batteries and 6 units of 100 Wp solar panels can serve household electrical loads for 1 day of battery charging and discharging, 1 day of battery charging and 1 day of battery discharging with average electric energy generated at 1485 W-hours. Costs can be saved in 1 month if the price of electricity is Rp. 1352/Kwh, is Rp. 20,104.-/month with an investment cost of Rp. 27,956,000.


Author(s):  
Livio de Santoli

Building sustainability, in term of energy efficiency, low-impact building materials, renewable energy, has experienced significant growth during the past years. In response to the growing dependence on fossil fuels and importations, due in part to the increase of energy consumption in the residential sector (in 2009 46,9 Mtep, 3% more than 2008) and the recent European directives (i.e. EU 2009/28/CE) requiring CO2 emissions cut of up to 13% in 2020, there is interest in promoting energy efficiency and renewable energy technologies, which are suitable for residential applications. In this paper we present an overview on actions related to minimization of buildings energy consumption in Italy. Prevalent line of action is to improve the energy performances of building envelope (Dlgs 192/05) using insulated frames, walls and roofs and replacing heat generators with condensing boilers. In addition to national directives, ONRE Report 2011 (National Observatory on building regulations) shows that 831 Municipalities (10% more than 2010) establish mandatory targets for insulation, photovoltaic solar panels, solar water heaters, heat pumps use, correct buildings orientation, saving of water resource and local materials use. In addiction an efficient energy rating of the buildings could promote the spread of energy efficiency measurement and consequently facilitate their implementation. The new energy rating system should meet international standards, regarding environment and energy aspects, and respect territorial needs.


Author(s):  
Luis Alberto Cantera-Cantera ◽  
Andrés Calvillo-Téllez

A photovoltaic solar power supply is presented; it supplies energy to the electrodes of a wastewater treatment prototype by electrocoagulation. The source will be able to supply three voltages levels 10, 20, and 30 volts, with a current of 1000 mA. The system consists of an array of solar panels and Nickel Metal batteries. The amount of energy to be supplied by the solar panels is estimated, the level of storage in batteries is calculated and fed to the electrocoagulation system. The results of an experiment that operates independently of the power supply line and that works in rural areas are presented.


Author(s):  
Jay Dipak Betai ◽  
Hong Zhou

Abstract Solar trackers make solar panels perpendicular to solar ray to enhance solar power reaping. The relative motion between Sun and Earth has two degrees of freedom. Sun travels from east to west during daytime and also moves north and south due to Earth’s tilt. However, Sun’s daily north-south move is much smaller than its east-west move. Sensor-based solar trackers make solar panels perpendicular to solar ray based on sensor information. Although the existing sensor-based solar trackers increase solar power reaping from solar panels significantly, they also consume considerable power by driving solar trackers. Sensorless solar trackers make solar panels perpendicular to solar ray based on calculated solar location. The performance of sensorless solar trackers is not affected by bad weather. This paper is on sensorless solar trackers. Single-axis solar trackers have one degree of freedom solar tracking motion. They can catch Sun’s daily east-west movement effectively. The Sun’s small north-south movement can be covered for single-axis solar trackers by monthly or seasonal adjustment of their orientations. This research is focused on single-axis sensorless solar trackers that are driven by linear actuators. The advantages of linear actuator driven solar trackers are their self-locking function and high load carrying capacity. Their challenges include limited solar panel motion range, potential interference between an oscillating solar panel and its fixed supporting ground link, and high motor power consumption for solar tracking. The research of this paper is motivated by surmounting the challenges facing sensorless single-axis linear actuator driven solar trackers. In this research, linear actuator driven solar trackers will be designed and analyzed. The models of the designed solar trackers will be developed. The kinematic and dynamic performances of the modeled solar trackers will be analyzed and simulated. The results of this research will provide some guidelines for developing linear actuator driven solar trackers.


2021 ◽  
Author(s):  
Hans Lustfeld

Abstract The main advantage of wind-solar power is the electric power production free of CO2. Its main disadvantage is the huge volatility of the system [national electric energy consumption powered by wind-solar power]. In fact, if this power production, averaged over one year, corresponds to the averaged electric consumption and is intended to replace all other electric power generating devices, then controlling the volatility of this system by using storage alone requires huge capacities of about 30TWh, capacities not available in Germany. However, based on German power data over the last six years (2015 till 2020) we show that the required storage capacity is decisively reduced, provided i) a surplus of wind-solar power is supplied, ii) smart meters are installed, iii) a different kind of wind turbines and solar panels is partially used, iv) a novel function describing this volatile system, is introduced. The new function, in turn, depends on three characteristic numbers, which means, that the volatility of this system is characterized by those numbers. When applying our schemes the results suggest that all the present electric energy in Germany can be obtained from controlled wind-solar power. And our results indicate that controlled wind-solar power can produce the energy for transportation, warm water, space heating and in part for process heating, requirering an increase of the electric energy production by a factor of 5. Then, however, a huge number of wind turbines and solar panels is required changing the appearance of German landscapes fundamentally.


Kilat ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 261-271
Author(s):  
Sugeng Purwanto

ABSTRACT Renewable energy is potential alternative energy to replace the central role of fossil energy which has been going on since the early 20th century. The solar power plant is alternative energy, especially for households and industry, and can be designed as a hybrid power plant consisting of solar panels, batteries, an automatic transfer switch (ATS), and a grid. This research will focus on developing ATS based on a microcontroller. It functions to regulate the load supply automatically from the three sources of electrical energy, like solar panels, batteries, and grid while the microcontroller functions to monitor the transfer of power from the solar power plant to grid and voltage movements in the system so that current and voltage data can be recorded from time to time to improve system reliability, effectiveness, and efficiency of the tool. ATS components consist of MCB, magnetic contactor, timer H3CR, relay, 2000VA inverter, solar charge controller 100A, NodeMCU ESP8266 IoT, and battery 12V 100AH. This research is conducted in one year to produce ATS based on a microcontroller that can automatically regulate the supply of loads from the three sources of electrical energy with a good level of efficiency and stability.  Keywords: solar power plants, hybrid power plants, an automatic transfer switch.  ABSTRAK Energi baru terbarukan merupakan energi alternatif yang potensial untuk menggantikan peran sentral dari energi fosil yang telah berlangsung sejak awal abad ke 20. PLTS merupakan salah satu energi alternatif penyedia energi listrik untuk rumah tangga dan industri serta dapat dirancang sebagai sistem pembangkit listrik tenaga hibrid (PLTH) yang terdiri dari panel surya, baterai, sistem pengaturan beban atau ATS (automatic transfer switch) dan jaringan PLN. Peneltian difokuskan pada pengembangan sistem ATS berbasiskan mikrokontroler. ATS berfungsi untuk mengatur suplai beban secara otomatis dari ketiga sumber energi listrik yaitu panel surya, baterai dan PLN sedangkan mikrokontroler berfungsi memonitor perpindahan daya dari PLTS ke sumber PLN dan pergerakan tegangan pada sistem sehingga dapat dilakukan pencatatan data arus dan tegangan dari waktu ke waktu sehingga dapat meningkatkan keandalan sistem, efektifitas dan efisiensi alat. Komponen ATS terdiri dari MCB, magnetic contactor, timer H3CR, relay, inverter 2000VA, solar charge controller 100A, NodeMCU ESP8266 IoT, dan baterai 12V 100Ah. Penelitian ini akan dilakukan dalam periode satu tahun menghasilkan ATS berbasiskan mikrokontroler yang dapat mengatur suplai beban secara otomatis dari ketiga sumber energi listrik dengan tingkat efisiensi dan kestabilan yang baik. Tim penelitian ini tediri dari 3 orang dan berasal dari program studi teknik elektro, IT PLN.  Kata kunci: pembangkit listrik tenaga surya, pembangkit listrik tenaga hibrid, pengaturan suplai beban.


2019 ◽  
Vol 11 (23) ◽  
pp. 6647 ◽  
Author(s):  
Suntiti Yoomak ◽  
Theerasak Patcharoen ◽  
Atthapol Ngaopitakkul

Solar rooftop systems in the residential sector have been rapidly increased in the term of installed capacity. There are various factors, such as climate, temperature, and solar radiation, that have effects on solar power generation efficiency. This paper presents a performance assessment of a solar system installed on the rooftop of residence in different regions of Thailand by using PSIM simulation. Solar rooftop installation comparison in different regions is carried out to evaluate the suitable location. In addition, three types of solar panels are used in research: monocrystalline, polycrystalline, and thin-film. The electrical parameters of real power and energy generated from the systems are investigated and analyzed. Furthermore, the economic evaluation of different solar rooftop system sizes using the monocrystalline module is investigated by using economic indicators of discounted payback period (DPP), net present value (NPV), internal rate of return (IRR), and profitability index (PI). Results show that the central region of Thailand is a suitable place for installing solar rooftop in terms of solar radiation, and the temperature has more solar power generation capacity than the other regions. The monocrystalline and polycrystalline solar panels can generate maximum power close to each other. All solar rooftop sizes with the Feed-in Tariff (FiT) scheme give the same DPP of 6.1 years, IRR of 15%, and PI of 2.57 which are better than the cases without the FiT scheme. However, a large-scale installation of solar rooftop systems can receive more electrical energy produced from the solar rooftop systems. As a result, the larger solar rooftop system sizes can achieve better economic satisfaction.


Author(s):  
Amanie N. Abdelmessih ◽  
Siddiq S. Mohammed

Solar power is a clean source of energy, i.e. it does not generate carbon dioxide or other air pollutants. In 2017, solar power produced only 0.6 percent of the energy used in the United States, according to the Energy Information Administration. Consequently, more solar energy should be implemented, such as in solar water heaters. This research took place in Riverside, Southern California where there is an abundance of solar energy. In house uniquely designed and assembled solar tubes were used in designing a mini solar water heating system. The mini solar water heating system was set to operate under either natural or forced convection. The results of running the system under forced convection then under natural convection conditions are reported and discussed in the article. In addition, comparison of using two different solar water storage systems are reported: the first was water; the second storage medium was a combination of water and gravel. Since water heaters are extensively used for residential purposes, this research mimicked the inefficiencies in residential use and is compared with ideal operating conditions. The performance of the different cases studied is evaluated.


Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 258 ◽  
Author(s):  
Abdus Hassan ◽  
Umar Afzaal ◽  
Tooba Arifeen ◽  
Jeong Lee

Recently, concurrent error detection enabled through invariant relationships between different wires in a circuit has been proposed. Because there are many such implications in a circuit, selection strategies have been developed to select the most valuable implications for inclusion in the checker hardware such that a sufficiently high probability of error detection ( P d e t e c t i o n ) is achieved. These algorithms, however, due to their heuristic nature cannot guarantee a lossless P d e t e c t i o n . In this paper, we develop a new input-aware implication selection algorithm with the help of ATPG which minimizes loss on P d e t e c t i o n . In our algorithm, the detectability of errors for each candidate implication is carefully evaluated using error prone vectors. The evaluation results are then utilized to select the most efficient candidates for achieving optimal P d e t e c t i o n . The experimental results on 15 representative combinatorial benchmark circuits from the MCNC benchmarks suite show that the implications selected from our algorithm achieve better P d e t e c t i o n in comparison to the state of the art. The proposed method also offers better performance, up to 41.10%, in terms of the proposed impact-level metric, which is the ratio of achieved P d e t e c t i o n to the implication count.


Sign in / Sign up

Export Citation Format

Share Document