3D Mechanical Properties of the Layered Esophagus: Experiment and Constitutive Model

2006 ◽  
Vol 128 (6) ◽  
pp. 899-908 ◽  
Author(s):  
W. Yang ◽  
T. C. Fung ◽  
K. S. Chian ◽  
C. K. Chong

The identification of a three dimensional constitutive model is useful for describing the complex mechanical behavior of a nonlinear and anisotropic biological tissue such as the esophagus. The inflation tests at the fixed axial extension of 1, 1.125, and 1.25 were conducted on the muscle and mucosa layer of a porcine esophagus separately and the pressure-radius-axial force was recorded. The experimental data were fitted with the constitutive model to obtain the structure-related parameters, including the collagen amount and fiber orientation. Results showed that a bilinear strain energy function (SEF) with four parameters could fit the inflation data at an individual extension very well while a six-parameter model had to be used to capture the inflation behaviors at all three extensions simultaneously. It was found that the collagen distribution was axial preferred in both layers and the mucosa contained more collagen, which were in agreement with the findings through a pair of uniaxial tensile test in our previous study. The model was expected to be used for the prediction of stress distribution within the esophageal wall under the physiological state and provide some useful information in the clinical studies of the esophageal diseases.

2011 ◽  
Vol 704-705 ◽  
pp. 811-816
Author(s):  
Jian Bin Sang ◽  
Wen Ying Yu ◽  
Bo Liu ◽  
Xiao Lei Li ◽  
Tie Feng Liu

This paper start with a discussion on various types of strain energy functions of rubber like materials. Theoretical analysis based on the strain energy function given in by Y.C.Gao in 1997 is proposed. The material parameters of strain energy function were curve-fitted from the uniaxial tensile test. The selected constitutive relation of rubber like materials was implemented into a finite element code MSC.Marc as a user material subroutine to analyze the thermal and mechanical behavior of rubber seal under the plane strain conditions. Contact force and distribution of the contact stress between lip seal and shaft are analyzed and coupled thermal mechanical analysis of rubber seal was proposed. The contact pressure distribution is readily obtainable from the nonlinear finite element analysis and the coupled thermal mechanical analyses results indicate that the thermal stress only have minor influence on the deformed shape of rubber seal, which will be a useful technique for predicting the properties of rubber seal and providing reference for engineering design. Keywords:rubber like materials, nonlinear finite element, contact analysis, thermal mechanical analysis


Author(s):  
Mircea Bîrsan

AbstractIn this paper, we present a general method to derive the explicit constitutive relations for isotropic elastic 6-parameter shells made from a Cosserat material. The dimensional reduction procedure extends the methods of the classical shell theory to the case of Cosserat shells. Starting from the three-dimensional Cosserat parent model, we perform the integration over the thickness and obtain a consistent shell model of order $$ O(h^5) $$ O ( h 5 ) with respect to the shell thickness h. We derive the explicit form of the strain energy density for 6-parameter (Cosserat) shells, in which the constitutive coefficients are expressed in terms of the three-dimensional elasticity constants and depend on the initial curvature of the shell. The obtained form of the shell strain energy density is compared with other previous variants from the literature, and the advantages of our constitutive model are discussed.


1983 ◽  
Vol 105 (3) ◽  
pp. 268-274 ◽  
Author(s):  
C. J. Chuong ◽  
Y. C. Fung

A three-dimensional stress-strain relationship derived from a strain energy function of the exponential form is proposed for the arterial wall. The material constants are identified from experimental data on rabbit arteries subjected to inflation and longitudinal stretch in the physiological range. The objectives are: 1) to show that such a procedure is feasible and practical, and 2) to call attention to the very large variations in stresses and strains across the vessel wall under the assumptions that the tissue is incompressible and stress-free when all external load is removed.


ROTASI ◽  
2014 ◽  
Vol 16 (3) ◽  
pp. 10
Author(s):  
Sugeng Waluyo

“LD-FEM” is an open source computer program working on the basis of finite element method (FEM) which is aimed to model and simulate large deformation in rubber materials. The kinematics of large deformation on the basis of the Total Lagrange framework is applied to linear 4-nodes tetrahedral element and then solved with Newton-Raphson iterative scheme. Furthermore, to obtain the material tangent stiffness directly from strain energy density functions, the Gill-Murray theory of numerical second derivative is used in LD-FEM. Finally, by using the Mooney-Rivlin strain energy function, the performance of LD-FEM is addressed for uniaxial tensile, shear and torsion loading tests. The results confirm the capability of LD-FEM to capture nonlinear behavior of the large deformation either with analytical or numerical approach on the material stiffness derivation with error less than 2%.


2005 ◽  
Vol 29 (3) ◽  
pp. 459-475
Author(s):  
Hamid Ghaemi ◽  
A. Spence ◽  
K. Behdinan

This study was carried out to develop a compressible pseudo-strain energy function that describes the mechanical behavior of rubber-like materials. The motivation for this work was two fold; first was to define a single-term strain energy function derived from constitutive equations that can describe the mechanical behavior of rubber-like materials and taking into account the coupling between principal stretches and the nearly incompressibility characteristic of elastomers. Second was to implement this strain energy function into the Finite Element Method (FEM) to study the suitability of the model in FEM. A one-term three-dimensional strain energy function based on the principal stretch ratios was proposed. The three dimensional constitutive function was then reduced to describe the behavior of rubber-like materials under biaxial and uniaxial loading condition based on the membrane theory. The work presented here was based on the decoupling of the strain density function into a deviatoric and a volumetric part. Using pure gum, GMS-SS-A40, uniaxial and equi-biaxial experiments were conducted employing different strain rate protocols. The material was assumed to be isotropic and homogenous. The experimental data from uniaxial and biaxial tests were used simultaneously to determine the material parameters of the proposed strain energy function. A GA curve fitting technique was utilized in the material parameter identification. The proposed strain energy function was compared to a few well-known strain energy functions as well as the experimental results. It was determined that the proposed strain energy function predicted the mechanical behavior of rubber-like material with greater accuracy as compared to other models both analytical and numerical results.


2019 ◽  
Vol 17 (01) ◽  
pp. 1844006
Author(s):  
Mahmood Jabareen ◽  
Yehonatan Pestes

The reliability of numerical simulations manifested the need for an accurate and robust finite element formulation. Therefore, in the present study, an eight node brick Cosserat point element ( CPE ) for the nonlinear dynamic analysis of three-dimensional (3D) solids including both thick and thin structures is developed. Within the present finite element formulation, a strain energy function is proposed and additively decoupled into two parts. One part is characterized by any 3D strain energy function, while the other part controls the response to inhomogeneous deformations. Several example problems are presented, which demonstrate the accuracy and the robustness of the developed CPE in modeling the dynamic response of elastic structures.


2012 ◽  
Vol 182-183 ◽  
pp. 148-152
Author(s):  
Kun Luan ◽  
Fa Zhang ◽  
Li Wei Wu

The uniaxial tensile properties of three-dimensional angle-interlock woven composites (3DAWCs) under quasi-static loading were investigated in this paper. The samples were manufactured into dog-bone shape and tested on Material Test System 810.23. The strain-stress curves in warp direction indicating the Young’s moduli, maximum stress and maximum strain are achieved from the uniaxial tensile test. The effects of microstructure and damage morphology of 3DAWC under quasi-static tension are discussed. Furthermore, we will focus on the energy absorption mechanism from the view of tensile failure mode. The material parameters of 3DAWC in warp direction can be evaluated for developing quantitative approach to design polymer matrix composite structures.


2016 ◽  
Vol 853 ◽  
pp. 46-50 ◽  
Author(s):  
Xiang Qing Li ◽  
Chuan Xiao Wu ◽  
Jian Feng Mao ◽  
Shi Yi Bao ◽  
Zeng Liang Gao

Three-dimensional (3D) elastic-plastic finite element model (FEM) is adopted to research the effect of side groove on the crack-front J-integral for different size of Compact Tension (CT) specimens. Although the side-grooved CT specimen is widely used in the existing test method, such as ASTM E1820-13, the test data of fracture toughness is varying with the various geometric parameters. Before FE calculation, the material properties of Q345 steel were obtained by uniaxial tensile test, especially for the true stress-strain relationship. In this paper, it focuses on the numerical study of geometric parameter effects on the fracture toughness. Toward this end, the commercial FE software of ABAQUS is adopted to calculate the J-integral. Since the side groove of CT specimen is so important to make the fracture test success, the various parameters of side groove is intensively analyzed for obtaining the accurate J-integral along the crack front, including the effects of the angle, depth and root radius. In fact, the side groove effect is so significant around the crack front that cannot be ignored in the J-integral calculation. Through rigorous FE investigation, the influence of the side groove on the fracture toughness testing is fully disclosed, and the appropriate side groove configuration is recommended accordingly.


Author(s):  
Giuseppe Montella ◽  
Sanjay Govindjee ◽  
Patrizio Neff

This work presents a hyperviscoelastic model, based on the Hencky-logarithmic strain tensor, to model the response of a tire derived material (TDM) undergoing moderately large deformations. The TDM is a composite made by cold forging a mix of rubber fibers and grains, obtained by grinding scrap tires, and polyurethane binder. The mechanical properties are highly influenced by the presence of voids associated with the granular composition and low tensile strength due to the weak connection at the grain–matrix interface. For these reasons, TDM use is restricted to applications involving a limited range of deformations. Experimental tests show that a central feature of the response is connected to highly nonlinear behavior of the material under volumetric deformation which conventional hyperelastic models fail in predicting. The strain energy function presented here is a variant of the exponentiated Hencky strain energy, which for moderate strains is as good as the quadratic Hencky model and in the large strain region improves several important features from a mathematical point of view. The proposed form of the exponentiated Hencky energy possesses a set of parameters uniquely determined in the infinitesimal strain regime and an orthogonal set of parameters to determine the nonlinear response. The hyperelastic model is additionally incorporated in a finite deformation viscoelasticity framework that accounts for the two main dissipation mechanisms in TDMs, one at the microscale level and one at the macroscale level. The new model is capable of predicting different deformation modes in a certain range of frequency and amplitude with a unique set of parameters with most of them having a clear physical meaning. This translates into an important advantage with respect to overcoming the difficulties related to finding a unique set of optimal material parameters as are usually encountered fitting the polynomial forms of strain energies. Moreover, by comparing the predictions from the proposed constitutive model with experimental data we conclude that the new constitutive model gives accurate prediction.


2015 ◽  
Vol 82 (7) ◽  
Author(s):  
A. J. Gross ◽  
K. Ravi-Chandar

In this article, a coupled experimental and numerical method is utilized for characterizing the elastic–plastic constitutive properties of ductile materials. Three-dimensional digital image correlation (DIC) is used to measure the full field deformation on two mutually orthogonal surfaces of a uniaxial tensile test specimen. The material’s constitutive model, whose parameters are unknown a priori, is determined through an optimization process that compares these experimental measurements with finite element simulations in which the constitutive model is implemented. The optimization procedure utilizes the robust dataset of locally observed deformation measurements from DIC in addition to the standard measurements of boundary load and displacement data. When the difference between the experiment and simulations is reduced sufficiently, a set of parameters is found for the material model that is suitable to large strain levels. This method of material characterization is applied to a tensile specimen fabricated from a sheet of 15-5 PH stainless steel. This method proves to be a powerful tool for calibration of material models. The final parameters produce a simulation that tracks the local experimental displacement field to within a couple percent of error. Simultaneously, the percent error in the simulation for the load carried by the specimen throughout the test is less than 1%. Additionally, half of the parameters for Hill’s yield criterion, describing anisotropy of the normal stresses, are found from a single tensile test. This method will find even greater utility in calibrating more complex material models by greatly reducing the experimental effort required to identify the appropriate model parameters.


Sign in / Sign up

Export Citation Format

Share Document