A Three-Dimensional Network Model for a Low Density Fibrous Composite

1998 ◽  
Vol 120 (2) ◽  
pp. 126-130 ◽  
Author(s):  
D. C. Stahl ◽  
S. M. Cramer

A procedure is described that predicts the mechanical behavior of a fibrous material by generating and analyzing finite element models of its three-dimensional microstructure. The approach is applicable to a class of materials with microstructures consisting of fibers connected at well-defined points. The procedure allows one to predict the effect of important sources of heterogeneity in these materials. Analyses determine initial elastic properties, failure mode, and strength of the composite; the failure analysis consists of tracking a progression of micro failures. The procedure is validated by comparison of predictions to test results.

2018 ◽  
Vol 85 (4) ◽  
Author(s):  
Dani Liu ◽  
Bahareh Shakibajahromi ◽  
Genevieve Dion ◽  
David Breen ◽  
Antonios Kontsos

The mechanical behavior of knitted textiles is simulated using finite element analysis (FEA). Given the strong coupling between geometrical and physical aspects that affect the behavior of this type of engineering materials, there are several challenges associated with the development of computational tools capable of enabling physics-based predictions, while keeping the associated computational cost appropriate for use within design optimization processes. In this context, this paper investigates the relative contribution of a number of computational factors to both local and global mechanical behavior of knitted textiles. Specifically, different yarn-to-yarn interaction definitions in three-dimensional (3D) finite element models are compared to explore their relative influence on kinematic features of knitted textiles' mechanical behavior. The relative motion between yarns identified by direct numerical simulations (DNS) is then used to construct reduced order models (ROMs), which are shown to be computationally more efficient and providing comparable predictions of the mechanical performance of knitted textiles that include interfacial effects between yarns.


1997 ◽  
Vol 8 (1) ◽  
pp. 90-104 ◽  
Author(s):  
T.W.P. Korioth ◽  
A. Versluis

In this paper, we provide a review of mechanical finite element analyses applied to the maxillary and/or mandibular bone with their associated natural and restored structures. It includes a description of the principles and the relevant variables involved, and their critical application to published finite element models ranging from three-dimensional reconstructions of the jaws to detailed investigations on the behavior of natural and restored teeth, as well as basic materials science. The survey revealed that many outstanding FE approaches related to natural and restored dental structures had already been done 10-20 years ago. Several three-dimensional mandibular models are currently available, but a more realistic correlation with physiological chewing and biting tasks is needed. Many FE models lack experimentally derived material properties, sensitivity analyses, or validation attempts, and yield too much significance to their predictive, quantitative outcome. A combination of direct validation and, most importantly, the complete assessment of methodical changes in all relevant variables involved in the modeled system probably indicates a good FE modeling approach. A numerical method for addressing mechanical problems is a powerful contemporary research tool. FE analyses can provide precise insight into the complex mechanical behavior of natural and restored craniofacial structures affected by three-dimensional stress fields which are still very difficult to assess otherwise.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2978
Author(s):  
Zhi-Min Liu ◽  
Xue-Jin Huo ◽  
Guang-Ming Wang ◽  
Wen-Yu Ji

Compared with straight steel–concrete composite beams, curved composite beams exhibit more complicated mechanical behaviors under combined bending and torsion coupling. There are much fewer experimental studies on curved composite beams than those of straight composite beams. This study aimed to investigate the combined bending and torsion behavior of curved composite beams. This paper presents static loading tests of the full elastoplastic process of three curved composite box beams with various central angles and shear connection degrees. The test results showed that the specimens exhibited notable bending and torsion coupling force characteristics under static loading. The curvature and interface shear connection degree significantly affected the force behavior of the curved composite box beams. The specimens with weak shear connection degrees showed obvious interfacial longitudinal slip and transverse slip. Constraint distortion and torsion behavior caused the strain of the inner side of the structure to be higher than the strain of the outer side. The strain of the steel beam webs was approximately linear. In addition, fine finite element models of three curved composite box beams were established. The correctness and applicability of the finite element models were verified by comparing the test results and numerical calculation results for the load–displacement curve, load–rotational angle curve, load–interface slip curve, and cross-sectional strain distribution. Finite element modeling can be used as a reliable numerical tool for the large-scale parameter analysis of the elastic–plastic mechanical behavior of curved composite box beams.


2014 ◽  
Vol 989-994 ◽  
pp. 982-985
Author(s):  
Jun Chen ◽  
Xiao Jun Ye

ANSYS-LS/DYNA 3D finite element software projectile penetrating concrete target three-dimensional numerical simulation , has been the target characteristics and destroy ballistic missile trajectory , velocity and acceleration and analyze penetration and the time between relationship , compared with the test results , the phenomenon is consistent with the simulation results. The results show that : the destruction process finite element software can better demonstrate concrete tests revealed the phenomenon can not be observed , estimated penetration depth and direction of the oblique penetration missile deflection .


Author(s):  
Igor Tsukrov ◽  
Michael Giovinazzo ◽  
Kateryna Vyshenska ◽  
Harun Bayraktar ◽  
Jon Goering ◽  
...  

Finite element models of 3D woven composites are developed to predict possible microcracking of the matrix during curing. A specific ply-to-ply weave architecture for carbon fiber reinforced epoxy is chosen as a benchmark case. Two approaches to defining the geometry of reinforcement are considered. One is based on the nominal description of composite, and the second involves fabric mechanics simulations. Finite element models utilizing these approaches are used to calculate the overall elastic properties of the composite, and predict residual stresses due to resin curing. It is shown that for the same volume fraction of reinforcement, the difference in the predicted overall in-plane stiffness is on the order of 10%. Numerical model utilizing the fabric mechanics simulations predicts lower level of residual stresses due to curing, as compared to nominal geometry models.


Sign in / Sign up

Export Citation Format

Share Document