An Experimental Investigation of the Flow Through an Axial-Flow Pump

1995 ◽  
Vol 117 (3) ◽  
pp. 485-490 ◽  
Author(s):  
W. C. Zierke ◽  
W. A. Straka ◽  
P. D. Taylor

The high Reynolds number pump (HIREP) facility at ARL Penn State has been used to perform a low-speed, large-scale experiment of the incompressible flow of water through a two-blade-row turbomachine. The objectives of this experiment were to provide a database for comparison with three-dimensional, turbulent flow computations, to evaluate engineering models, and to improve our physical understanding of many of the phenomena involved in this complex flow field. This summary paper briefly describes the experimental facility, as well as the experimental techniques—such as flow visualization, static-pressure measurements, laser Doppler velocimetry, and both slow- and fast-response pressure probes. Then, proceeding from the inlet to the exit of the pump, the paper presents highlights of experimental measurements and data analysis, giving examples of measured physical phenomena such as endwall boundary layers, separation regions, wakes, and secondary vortical structures. In conclusion, this paper provides a synopsis of a well-controlled, larger scope experiment that should prove helpful to those who wish to use the database.

1998 ◽  
Vol 370 ◽  
pp. 347-380 ◽  
Author(s):  
G. J. NATHAN ◽  
S. J. HILL ◽  
R. E. LUXTON

A continuously unstable precessing flow within a short cylindrical chamber following a large sudden expansion is described. The investigation relates to a nozzle designed to produce a jet which achieves large-scale mixing in the downstream field. The inlet flow in the plane of the sudden expansion is well defined and free from asymmetry. Qualitative flow visualization in water and semi-quantitative surface flow visualization in air are reported which identify this precession within the chamber. Quantitative simultaneous measurements from fast-response pressure transducers at four tapping points on the internal walls of the nozzle chamber confirm the presence of the precessing field. The investigation focuses on the flow within the nozzle chamber rather than that in the emerging jet, although the emerging flow is also visualized.Two flow modes are identified: a ‘precessing jet’ mode which is instantaneously highly asymmetric, and a quasi-symmetric ‘axial jet’ mode. The precessing jet mode, on which the investigation concentrates, predominates in the geometric configuration investigated here. A topologically consistent flow field, derived from the visualization and from the fluctuating pressure data, which describes a three-dimensional and time-dependent precessing motion of the jet within the chamber is proposed. The surface flow visualization quantifies the axial distances to lines of positive and negative bifurcation allowing comparison with related flows involving large-scale precession or flapping reported by others. The Strouhal numbers (dimensionless frequencies) of these flows are shown to be two orders of magnitude lower than that measured in the shear layer of the jet entering the chamber. The phenomenon is demonstrated to be unrelated to acoustic coupling.


2008 ◽  
Vol 615 ◽  
pp. 371-399 ◽  
Author(s):  
S. DONG

We report three-dimensional direct numerical simulations of the turbulent flow between counter-rotating concentric cylinders with a radius ratio 0.5. The inner- and outer-cylinder Reynolds numbers have the same magnitude, which ranges from 500 to 4000 in the simulations. We show that with the increase of Reynolds number, the prevailing structures in the flow are azimuthal vortices with scales much smaller than the cylinder gap. At high Reynolds numbers, while the instantaneous small-scale vortices permeate the entire domain, the large-scale Taylor vortex motions manifested by the time-averaged field do not penetrate a layer of fluid near the outer cylinder. Comparisons between the standard Taylor–Couette system (rotating inner cylinder, fixed outer cylinder) and the counter-rotating system demonstrate the profound effects of the Coriolis force on the mean flow and other statistical quantities. The dynamical and statistical features of the flow have been investigated in detail.


Author(s):  
O. Schennach ◽  
R. Pecnik ◽  
B. Paradiso ◽  
E. Go¨ttlich ◽  
A. Marn ◽  
...  

The current paper presents the results of numerical and experimental clocking investigations performed in a high-pressure transonic turbine with a downstream vane row. The objective was a detailed analysis of shock and wake interactions in such a 1.5 stage machine while clocking the vanes. Therefore a transient 3D-Navier Stokes calculation was done for two clocking positions and the three dimensional results are compared with Laser-Doppler-Velocimetry measurements at midspan. Additionally the second vane was equipped with fast response pressure transducers to record the instantaneous surface pressure for 20 different clocking positions at midspan.


Author(s):  
Roger W. Ainsworth ◽  
John L. Allen ◽  
J. Julian M. Batt

The advent of a new generation of transient rotating turbine simulation facilities, where engine values of Reynolds and Mach number are matched simultaneously together with the relevant rotational parameters for dimensional similitude (Dunn et al [1988], Epstein et al [1984]. Ainsworth et al [1988]), has provided the stimulus for developing improved instrumentation for investigating the aerodynamic flows in these stages. Much useful work has been conducted in the past using hot-wire and laser anemometers. However, hot-wire anemometers are prone to breakage in the high pressure flows required for correct Reynolds numbers, Furthermore some laser techniques require a longer runtime than these transient facilites permit, and generally yield velocity information only, giving no data on loss production. Advances in semiconductor aerodynamic probes are beginning to fulfil this perceived need. This paper describes advances made in the design, construction, and testing of two and three dimensional fast response aerodynamic probes, where semiconductor pressure sensors are mounted directly on the surface of the probes, using techniques which have previously been successfully used on the surface of rotor blades (Ainsworth, Dietz and Nunn [1991]). These are to be used to measure Mach number and flow direction in compressible unsteady flow regimes. In the first section, a brief review is made of the sensor and associated technology which has been developed to permit a flexible design of fast response aerodynamic probe. Following this, an extensive programme of testing large scale aerodynamic models of candidate geometries for suitable semiconductor scale probes is described, and the results of these discussed. The conclusions of these experiments, conducted for turbine representative mean and unsteady flows, yielded new information for optimising the design of the small scale semiconductor probes, in terms of probe geometry, sensor placement, and aerodynamic performance. Details are given of a range of wedge and pyramid semiconductor probes constructed, and the procedures used in calibrating and making measurements with them. Differences in performance are discussed, allowing the experimenter to choose an appropriate probe for the particular measurement required. Finally, the application of prototype semiconductor probes in a transient rotor experiment at HP turbine representative conditions is described, and the data so obtained is compared with (PD solutions of the unsteady viscous flow-field.


2000 ◽  
Author(s):  
M. Singh ◽  
P. K. Panigrahi ◽  
G. Biswas

Abstract A numerical study of rib augmented cooling of turbine blades is reported in this paper. The time-dependent velocity field around a pair of symmetrically placed ribs on the walls of a three-dimensional rectangular channel was studied by use of a modified version of Marker-And-Cell algorithm to solve the unsteady incompressible Navier-Stokes and energy equations. The flow structures are presented with the help of instantaneous velocity vector and vorticity fields, FFT and time averaged and rms values of components of velocity. The spanwise averaged Nusselt number is found to increase at the locations of reattachment. The numerical results are compared with available numerical and experimental results. The presence of ribs leads to complex flow fields with regions of flow separation before and after the ribs. Each interruption in the flow field due to the surface mounted rib enables the velocity distribution to be more homogeneous and a new boundary layer starts developing downstream of the rib. The heat transfer is primarily enhanced due to the decrease in the thermal resistance owing to the thinner boundary layers on the interrupted surfaces. Another reason for heat transfer enhancement can be attributed to the mixing induced by large-scale structures present downstream of the separation point.


1978 ◽  
Vol 88 (3) ◽  
pp. 451-463 ◽  
Author(s):  
A. E. Perry ◽  
T. T. Lim

By applying small lateral oscillations to a glass tube from which smoke was issuing, perfectly periodic coflowing jets and wake structures were produced at Reynolds numbers of order 300-1000. These structures remained coherent over long streamwise distances and appeared to be perfectly frozen when viewed under stroboscopic light which was synchronized with the disturbing oscillation. By the use of strobing laser beams, longitudinal sections of the structures were photographed and an account of the geometry of these structures is reported.When the tube was unforced, similar structures occurred but they modulated in scale and frequency, and their orientation was random.A classification of structures is presented and examples are demonstrated in naturally occurring situations such as smoke from a cigarette, the wake behind a three-dimensional blunt body, and the high Reynolds number flow in a plume from a chimney. It is suggested that an examination of these structures may give some insight into the large-scale motion in fully turbulent flow.


2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Elissavet Boufidi ◽  
Marco Alati ◽  
Fabrizio Fontaneto ◽  
Sergio Lavagnoli

Abstract A miniaturized five-hole fast response pressure probe is presented, and the methods for the aerodynamic design and performance characterization are explained in detail. The probe design is aimed for three-dimensional (3D) time-resolved measurements in turbomachinery flows, therefore requiring high frequency response and directional sensitivity. It features five encapsulated piezoresistive pressure transducers, recessed inside the probe hemispherical head. Theoretical and numerical analyses are carried out to estimate the dynamic response of the pressure tap line-cavity systems and to investigate unsteady effects that can influence the pressure readings. A prototype is manufactured and submitted to experimental tests that demonstrate performance in line with the theoretical and numerical predictions of the dynamic response: the natural frequency of the central and lateral taps extends to 200 and 25 kHz, respectively. An aerodynamic calibration is also performed at different Reynolds and Mach numbers. The probe geometry offers a good angular sensitivity in a ± 30 deg incidence range, while a frequency analysis reveals the presence of pressure oscillations related to vortex shedding at large angles of attack.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1493
Author(s):  
Weidong Cao ◽  
Wei Li

The operating range of axial flow pumps is often constrained by the onset of rotating stall. An improved method using a double inlet nozzle to stabilize the performance curve is presented in the current study; a single inlet nozzle and three kinds of double inlet nozzle with different rib gap widths at the inlet of axial flow pump impeller were designed. Three dimensional (3D) incompressible flow fields were simulated, and the distributions of turbulence kinetic energy and velocity at different flow rates located at the inlet section, as well as the pressure and streamline in the impeller, were obtained at the same time. The single inlet nozzle scheme and a double inlet nozzle scheme were studied; the experimental and numerical performance results show that although the cross section is partly blocked in the double inlet nozzle, the head and efficiency do not decline at stable operation flow rate. On small flow rate condition, the double inlet nozzle scheme effectively stabilized the head-flow performance, whereby the block induced by the backflow before the impeller was markedly improved by using a double inlet nozzle. It has also been found that the rib gap width impacts the efficiency curve of the axial flow pump.


Author(s):  
Hong Gao ◽  
Wanlai Lin ◽  
Fangming Ye

The purpose of the present study is to investigate the global performance and three dimensional flow fields in a water-jet pump. TASCflow software is employed to simulate the rotator-stator coupling flow field. A standard k-ε turbulence model combined with standard wall functions is used. In order to investigate the effect of a rear stator on flow fields, the flows in two water-jet pumps with and without a rear stator are studied. The CFD predicted global performances are in good agreement with the experimental results. Then the flow fields, such as the pressure distribution on the blade surfaces, the axial and tangential velocities distribution, especially the radial loading distribution are investigated at different flow rates. In addition, the effect of a rear stator and different spacing between the rotor and the stator on the global performance and the flow fields of the water-jet pump are also investigated.


1996 ◽  
Vol 118 (4) ◽  
pp. 835-843 ◽  
Author(s):  
B. V. Marathe ◽  
B. Lakshminarayana ◽  
Y. Dong

The objective of this investigation is to understand the nature of the complex flow field inside each element of the torque converter through a systematic experimental and numerical investigation of the flow field. A miniature five-hole probe was used to acquire the data at the exit of the stator at several operating conditions. The flow field is found to be highly three dimensional with substantial flow deviations, and secondary flow at the exit of the stator. The secondary flow structure, caused by the upstream radial variation of the through flow, induces flow overturning near the core. Flow separation near the shell causes flow underturning in this region. The rate of decay of stator wake is found to be slower than that observed in the wakes of axial flow turbine nozzles. The flow predictions by a Navier–Stokes code are in good agreement with the pressure and the flow field measured at the exit of the stator at the design and the off-design conditions.


Sign in / Sign up

Export Citation Format

Share Document