Heat Transfer in Living Systems: Current Opportunities

1998 ◽  
Vol 120 (4) ◽  
pp. 810-829 ◽  
Author(s):  
K. R. Diller ◽  
T. P. Ryan

This paper presents an overview of the field of bioheat transfer. Topics covered include factors that distinguish heat transfer in living systems from inanimate systems, application areas in basic research and in clinical diagnosis and therapy, and our projection of where the field is headed and what are likely to be the most fertile opportunities for contributions by members of the heat transfer community.


2014 ◽  
Vol 291 (6) ◽  
pp. 1417-1423 ◽  
Author(s):  
Neele Schepker ◽  
Guillermo-José Garcia-Rocha ◽  
Frauke von Versen-Höynck ◽  
Peter Hillemanns ◽  
Cordula Schippert


2019 ◽  
Vol 8 (3) ◽  
pp. 64-75
Author(s):  
J. Kaur ◽  
S. A. Khan

The electromagnetic energy associated with microwave radiation interacts with the biological tissues and consequently, may produce thermo-physiological effects in living beings. Traditionally, Pennes’ bioheat equation (BTE) is employed to analyze the heat transfer in biological medium. Being based on Fourier Law, Pennes’ BTE assumes infinite speed of propagation of heat transfer. However, heat propagates with finite speed within biological tissues, and thermal wave model of bioheat transfer (TWBHT) demonstrates this non-Fourier behavior of heat transfer in biological medium. In present study, we employed Pennes’ BTE and TWMBT to numerically analyze temperature variations in human abdomen model exposed to plane microwaves at 2450 MHz. The numerical scheme comprises coupling of solution of Maxwell's equation of wave propagation within tissue to Pennes’ BTE and TWMBT. Temperatures predicted by both the bioheat models are compared and effect of relaxation time on temperature variations is investigated. Additionally, electric field distribution and specific absorption rate (SAR) distribution is also studied.  Transient temperatures predicted by TWMBT are lower than that by traditional Pennes’ BTE, while temperatures are identical in steady state. The results provide comprehensive understanding of temperature changes in irradiated human body, if microwave exposure duration is short.



2019 ◽  
Vol 8 (11) ◽  
pp. 1936
Author(s):  
Monica Florescu ◽  
Liliana Rogozea

With this Editorial, we want to present the Special Issue, “Advanced Analytical Methods in Clinical Diagnosis and Therapy”. The development of medicine is not possible without progress in the field of identifying different biomarkers or treatments using modern approaches, such as the analytical methods presented in articles that are part of this issue. Thus, with the support of experts, both aspects of theoretical and practical interest from different fields of pathologies have been addressed.



2018 ◽  
Vol 387 ◽  
pp. 1-9
Author(s):  
Sanatan Das ◽  
Tilak Kumer Pal ◽  
Rabindra Nath Jana ◽  
Oluwole Daniel Makinde

This paper examines the heat transfer in living skin tissue that is subjected to a convective heating. The tissue temperature evolution over time is classically described by the one-dimensional Pennes' bioheat transfer equation which is solved by applying Laplace transform method. The heat transfer analysis on skin tissue (dermis and epidermis) has only been studied defining the Biot number. The result shows that the temperature in skin tissue is less subject to the convected heating skin compared to constant skin temperature. The study also shows that the Biot number has a significant impact on the temperature distribution in the layer of living tissues. This study finds its application in thermal treatment.



2009 ◽  
Vol 131 (7) ◽  
Author(s):  
Devashish Shrivastava ◽  
J. Thomas Vaughan

A thermal model was needed to predict temperatures in a perfused tissue, which satisfied the following three criteria. One, the model satisfied conservation of energy. Two, the heat transfer rate from blood vessels to tissue was modeled without following a vessel path. Three, the model applied to any unheated and heated tissue. To meet these criteria, a generic bioheat transfer model (BHTM) was derived here by conserving thermal energy in a heated vascularized finite tissue and by making a few simplifying assumptions. Two linear coupled differential equations were obtained with the following two variables: tissue volume averaged temperature and blood volume averaged temperature. The generic model was compared with the widely employed empirical Pennes’ BHTM. The comparison showed that the Pennes’ perfusion term wCp(1−ε) should be interpreted as a local vasculature dependent heat transfer coefficient term. Suggestions are presented for further adaptations of the general BHTM for specific tissues using imaging techniques and numerical simulations.



Author(s):  
Maral Biniazan ◽  
Kamran Mohseni

Hyperthermia, also called thermal therapy or thermotherapy, is a type of cancer treatment in which the aim is to maintain the surrounding healthy tissue at physiologically normal temperatures and expose the cancerous region to high temperatures between 43°C–45°C. Several methods of hyperthermia are currently under study, including local, regional, and whole-body hyperthermia. In local hyperthermia, Interstitial techniques are used to treat tumors deep within the body, such as brain tumors. heat is applied to the tumor, usually by probes or needles which are inserted into the tumor. The heat source is then inserted into the probe. Invasive interstitial heating technique offer a number of advantages over external heating approaches for localizing heat into small tumors at depth. e. g interstitial technique allows the tumor to be heated to higher temperatures than external techniques. This is why an innovative internal hyperthermia research is being conducted in the design of an implantable microheater [1]. To proceed with this research we need complete and accurate data of the strength, number and location of the micro heaters, which is the objective of this paper. The location, strength, and number of implantable micro heaters for a given tumor size is calculated by solving an Inverse Heat Transfer Problem (IHTP). First we model the direct problem by calculating the transient temperature field via Pennies bioheat transfer equation. A nonlinear least-square method, modified by addition of a regularization term, Levenberg Marquardt method is used to determine the inverse problem [2].





2013 ◽  
Vol 464 ◽  
pp. 163-170 ◽  
Author(s):  
F. Baffigi ◽  
C. Bartoli

This work collects the experimental results obtained in the Thermal Fluid Dynamics Lab at the Department of Energy, Systems, Land and Constructions Engineering at the University of Pisa, concerning a basic physics research on the influence of ultrasounds in single phase free convection and in subcooled boiling, at atmospheric pressure. The ultrasounds are applied at the set frequency of 40 kHz, with a transducer output changing from 300 to 500W, on a circular horizontal cylinder heated by Joule effect, immersed in distilled water. The tests in single phase free convection, without ultrasonic waves, are validated by means of the classical correlations reported in literature, but they do not produce distinctive augmentation of the heat transfer. The enhancement of the heat transfer coefficient is maximum in subcooled boiling conditions (about 57%). In this regime a detailed investigation was performed to optimize the variables involved, such as the ultrasound generator power, the position of the cylinder and, especially, the subcooling degree. This paper, makes clear systematically the effects of ultrasounds on the heat transfer and shows as they could be very useful as cooling system for the last generation electronic components.



1985 ◽  
Vol 20 (sup109) ◽  
pp. 35-39 ◽  
Author(s):  
Lars Lööf ◽  
Hans-Olov Adami ◽  
Ingegerd Agenäs ◽  
Sven Gustavsson ◽  
Anders Nyberg ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document