A Method to Determine the Static Load Distribution in a Chain Drive

1999 ◽  
Vol 121 (3) ◽  
pp. 402-408 ◽  
Author(s):  
I. Troedsson ◽  
L. Vedmar

A model of how to calculate the load distribution for a chain drive is presented. In the model the complete standard geometry is used without any assumptions. The rollers which are in contact with the sprockets can move freely along the tooth flanks and their positions are given by force equilibrium. Since the positions of the rollers and thereby also the load distribution are dependent on the two connecting spans, these necessary tight and slack spans have been included in the model. The elastic deformation in the chain is included as well as the gravitational force.

Author(s):  
I Troedsson ◽  
L Vedmar

This paper presents a method to calculate the forces in a chain and, thus, the resulting load distribution along the sprockets in a chain transmission working at a moderate or high speed. When the chain drive is loaded, the rollers that contact the sprockets will move along the flanks to different height positions. There are mainly two different ways to determine the actual positions: to assume the positions or to use force equilibrium and to calculate the positions. To find the correct solution the geometry and the force equilibrium are used which will give each roller's position, along the flank. This method demands knowledge of all parts of the chain, even the slack part. Therefore it has been necessary to model both the connecting tight and the slack spans in which power between the two sprockets is transmitted. The gravitational force acting at the chain has been included in the complete model so that the position of the rollers and the forces in the links at the slack span can be calculated. The elastic deformation in the chain has also been included. The moment of inertia in the two sprockets and in the outer geometry has been taken into account, but not the inertia forces in the chain.


2021 ◽  
Vol 4 (1) ◽  
pp. 29-35
Author(s):  
Nafisa Saidho’jaeva ◽  

The article deals with the calculation of the drive and chain transmission of the newly created mechanized drying plant for drying melon slices. The essence of the utility model: the machine contains a horizontal tunnel chamber, inside which is mounted a chain conveyor with driving and driven sprockets, load-carrying elements, the IR emitters with reflectors on top of the camera mounted electric air heater, fan, an annular heat exchanger equipped with inlet and outlet nozzles of the drying agent. On the branches of the conveyor chain, lodgments with folding clamps are mounted, on which load-bearing elements are fixed, which are used as wooden poles. The calculation of the drive and chain transmission of the drying plant conveyor was carried out according to the existing method according to the scheme shown in the figure. Thus, the main parameters of the drive and chain transmission parts of the mechanized chamber-chain drying plant for drying melon fruits were determined by calculation


2014 ◽  
Vol 22 (4) ◽  
pp. 1-10 ◽  
Author(s):  
Michal Hoľko ◽  
Jakub Stacho

Abstract The article deals with numerical analyses of a Continuous Flight Auger (CFA) pile. The analyses include a comparison of calculated and measured load-settlement curves as well as a comparison of the load distribution over a pile's length. The numerical analyses were executed using two types of software, i.e., Ansys and Plaxis, which are based on FEM calculations. Both types of software are different from each other in the way they create numerical models, model the interface between the pile and soil, and use constitutive material models. The analyses have been prepared in the form of a parametric study, where the method of modelling the interface and the material models of the soil are compared and analysed. Our analyses show that both types of software permit the modelling of pile foundations. The Plaxis software uses advanced material models as well as the modelling of the impact of groundwater or overconsolidation. The load-settlement curve calculated using Plaxis is equal to the results of a static load test with a more than 95 % degree of accuracy. In comparison, the load-settlement curve calculated using Ansys allows for the obtaining of only an approximate estimate, but the software allows for the common modelling of large structure systems together with a foundation system.


2020 ◽  
Vol 151 ◽  
pp. 103893 ◽  
Author(s):  
Chang Liu ◽  
Chunyu Zhao ◽  
Xianli Meng ◽  
Bangchun Wen

Author(s):  
Petro D. Kryvyy ◽  
Ihor M. Bey ◽  
Oksana I. Shymanska ◽  
Petro P. Kryvyy

Abstract The analysis of the available calculation methods of chain-drives load-carrying ability is given according to the criterion of the tolerance unit pressure in a single profile chain joint [p]0. It is shown, that the values of [p]0 were determined according to the deterministic ideas without consideration of the distribution law of both random varieties of contact step of inner and outer rings and lengths of drive strands of the first and second profile of the chain drive. Probability task of determination of the tolerance unit pressure in two profile chain joints [p0]q is solved, when the structural, technological and physical-mechanical characteristic of the chain, that is, the lengths of drive strand of a chain-drive, accuracy of contact steps and stiffness of a drive roller chain are considered. The measurement procedure and the empirical dependencies for determination of drive roller chains deformation and stiffness are presented. As a result, the dependencies for the determination of [p0]q as the basic criterion according to which selection of a chain dimension-type, as well as characteristics used for the comparative estimation of a drive chain quality of different manufacturers when certain probability estimations are taken into consideration, were obtained.


Author(s):  
Jiajia Zhao ◽  
Mingxing Lin ◽  
Xianchun Song ◽  
Yanfeng Zhao ◽  
Nan Wei

The accurate model of the load state for all balls under multidirectional load is very helpful for the design process of ball screws. The contact deformation model of the ball screw without consideration of the stress difference of all balls is inaccurate. In this paper, a novel contact load model of the ball screw is established by considering coupled axial, radial load to study the elastic deformation displacement and position accuracy. The deviation and variation of axial elastic deformation with the dimension errors of all balls are investigated to obtain the influence of load state on the precision sustainability of the ball screw. The position precision including travel deviation and variation by considering load distribution of all balls is studied under the different load conditions. In addition, a new working bench is designed to study the position precision of the ball screw. The experimental study is carried out to obtain the relationship between the position precision and the contact load state of all balls, which is a reference to compensate for the precision loss of the ball screw.


2003 ◽  
Vol 125 (1) ◽  
pp. 165-168 ◽  
Author(s):  
Lizhong Xu ◽  
Zhen Huang ◽  
Yulin Yang

Considering the elastic deformation of the rotor and the periodic change of the mesh teeth pair number, the calculation equations of the load distribution for the toroidal drive are presented. Based on the equations, the formulas for calculation of the contact stresses among stator and worm are introduced. By using the above-mentioned formulas, the contact stress distributions for the drive are obtained. The optimal parameters providing for equal contact strength of the stator and worm are determined. These results are useful in manufacture and design of the drive.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Bo Lin ◽  
Chinedum E. Okwudire ◽  
Jason S. Wou

Accurate modeling of static load distribution of balls is very useful for proper design and sizing of ball screw mechanisms (BSMs); it is also a starting point in modeling the dynamics, e.g., friction behavior, of BSMs. Often, it is preferable to determine load distribution using low order models, as opposed to computationally unwieldy high order finite element (FE) models. However, existing low order static load distribution models for BSMs are inaccurate because they ignore the lateral (bending) deformations of screw/nut and do not adequately consider geometric errors, both of which significantly influence load distribution. This paper presents a low order static load distribution model for BSMs that incorporates lateral deformation and geometric error effects. The ball and groove surfaces of BSMs, including geometric errors, are described mathematically and used to establish a ball-to-groove contact model based on Hertzian contact theory. Effects of axial, torsional, and lateral deformations are incorporated into the contact model by representing the nut as a rigid body and the screw as beam FEs connected by a newly derived ball stiffness matrix which considers geometric errors. Benchmarked against a high order FE model in case studies, the proposed model is shown to be accurate in predicting static load distribution, while requiring much less computational time. Its ease-of-use and versatility for evaluating effects of sundry geometric errors, e.g., pitch errors and ball diameter variation, on static load distribution are also demonstrated. It is thus suitable for parametric studies and optimal design of BSMs.


2011 ◽  
Vol 2011.48 (0) ◽  
pp. 381-382
Author(s):  
MASANORI SHINTANI ◽  
TOMONORI YOSHIYA
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document