Determination of the Temperature of a Machined Surface

1998 ◽  
Vol 120 (2) ◽  
pp. 259-263 ◽  
Author(s):  
T. H. Chu ◽  
J. Wallbank

A technique for measuring temperature close to the primary cutting edge in turning has been developed. The cutting temperatures of a 0.16 percent carbon bright drawn mild steel, have been measured for a range of cutting speeds and feedrates at a constant depth of cut. Tool nose radius was also varied. The correlations for the workpiece temperature of cutting speed and feedrate have been developed. The results show that the temperature correlates well with cutting speed and feedrate but the nose radius has little effect. Cutting forces were measured by a dynamometer and these were used to find the non zero forces at zero feedrate. These forces have been related to the deformation of the work material near the cutting edge of the tool and a method for calculating the cutting temperatures from these has been proposed.

2013 ◽  
Vol 685 ◽  
pp. 68-75 ◽  
Author(s):  
Salman Pervaiz ◽  
Ibrahim Deiab ◽  
Basil Darras ◽  
Amir Rashid ◽  
Mihai Nicolescu

Titanium alloys are labeled as difficult to materials because of their low machinability rating. This paper presents an experimental study of machining Ti-6Al-4V under turning operation. All machining tests were conducted under dry, mist and flood cooling approaches by using a TiAlN coated carbide cutting inserts. All cutting experiments were conducted using high and low levels of cutting speeds and feed rates. The study compared surface finish of machined surface and flank wear at cutting edge under dry, mist and flood cooling approaches. Scanning electron microscopy was utilized to investigate the flank wear at cutting edge under various cooling approaches and cutting conditions. Investigation revealed that TiAlN coated carbides performed comparatively better at higher cutting speed.


Author(s):  
Kubilay Aslantas ◽  
Şükrü Ülker ◽  
Ömer Şahan ◽  
Danil Yu Pimenov ◽  
Khaled Giasin

AbstractMicroturning is a micromechanical machining process used to produce microcylindrical or axially symmetrical parts. Microcylindrical parts are mainly used in microfluidic systems, intravenous micromotors, microsurgical applications, optical lens applications, and microinjection systems. The workpiece diameter is very small in microturning and therefore is greatly affected by the cutting forces. For this reason, it is important to predict the cutting forces when machining miniature parts. In this study, an analytical mechanistic model of microturning is used to predict the cutting forces considering the tool nose radius. In the semi-empirically developed mechanistic model, the tool radius was considered. A series of semi-orthogonal microturning cutting tests were carried out to determine the cutting and edge force coefficients. The mechanistic model was generalized depending on the cutting speed and depth of cut by performing multilinear regression analysis. In the study, the depth of cut (ap = 30–90 µm) and feed values (f = 0.5–20 µm/rev) were selected considering the nose radius and edge radius of the cutting tool. The experiments were carried out under high-cutting speeds (Vc = 150–500 m/min) and microcutting conditions. Ti6Al4V alloy was used as the workpiece material and the tests were carried out under dry cutting conditions. Validation tests for different cutting parameters were carried out to validate the accuracy of the developed mechanistic model. The results showed that the difference between the mechanistic model and the experimental data was a minimum of 3% and a maximum of 24%. The maximum difference between the experimental and the model usually occurs in forces in the tangential direction. It has been observed that the developed model gives accurate results even at a depth of cut smaller than the nose radius and at feed values smaller than the edge radius.


Author(s):  
J A Arsecularatne ◽  
P Mathew ◽  
P L B Oxley

A method is described for calculating the chip flow direction in terms of the tool cutting edge geometry and the cutting conditions, namely feed and depth of cut. By defining an equivalent cutting edge based on the chip flow direction it is then shown how cutting forces can be predicted given the work material's flow stress and thermal properties. A comparison between experimental results obtained from bar turning tests and predicted values for a wide range of tool geometries and cutting conditions shows good agreement.


2014 ◽  
Vol 575 ◽  
pp. 431-436 ◽  
Author(s):  
M.S. Alajmi ◽  
S.E. Oraby

The impact of the cutting parameters; speed, feed, and depth of cut on the wear and the life of the cutting edge has long been a matter of debate among researchers. The cutting speed has long been agreed to have a prime influence in such a way that increasing speed leads to higher wear rate. Depth of cut has been concluded by majority of studies to have insignificant or negligible impact on edge wear and deformation. Despite its long established influence on the roughness of the machined surface, the effect of cutting feed on edge wear and deformation still requires more explanation. Cutting feed is a crucial parameter governing the product surface finish and dimensional accuracy and, therefore, its attitude during machining should be fully understood. This study presents experimental and modeling approach to detect the feed-wear functional interrelation considering various domains of the cutting speed. Results showed that the impact of the cutting feed is firmly associated with the level of cutting speed employed. Speed-feed interaction proved to be responsible for the performance of the cutting edge during machining.


2018 ◽  
Vol 14 (1) ◽  
pp. 115-121 ◽  
Author(s):  
Pun Krishna Kaway ◽  
Xueping Zhang

Titanium alloy, Ti6Al4V, has been widely used in aerospace, automotive, biomedical, and chemical industries due to its exceptional strength to weight ratio, high temperature performance, and corrosion resistance. However, machinability of Ti6Al4V is poor due to high strength at elevated temperatures, low modulus, and low thermal conductivity. Poor machinability of Ti6Al4V deteriorates the surface integrity of the machined surface. Poor surface integrity causes high machining cost, surface defects, initiate cracks, and premature failure of the machined surface. Thus, it is indispensable to obtain better surface integrity when machining titanium alloy Ti6Al4V. Cutting parameters such as cutting speed, feed rate, and depth of cut have significant effect on the surface integrity when machining titanium alloy Ti6Al4V. Hence, this study investigates surface integrity of Ti6Al4V by ball end milling at different cutting speeds, feed rates, and depth of cuts. Microstructure of subsurface is studied at different cutting speeds, feed rates, and depth of cuts. The results show that the depth of deformation of subsurface increases with increase in the cutting speed, feed rate, and depth of cut. Journal of the Institute of Engineering, 2018, 14(1): 115-121


2014 ◽  
Vol 493 ◽  
pp. 546-551 ◽  
Author(s):  
Safian Sharif ◽  
Habib Safari ◽  
Sudin Izman ◽  
Denni Kurniawan

The surface quality generated when high speed dry end milling (HSDEM) Ti-6Al-4V-ELI titanium alloy with coated and uncoated carbide tools were investigated. Evaluation was conducted using TiAlN+TiN coated and uncoated cemented carbide tools under different high cutting speeds and feed rates conditions. Surface roughness and cutting forces were measured when using new tools. The milled surface quality and corresponding alteration were characterized through electron microscopy. Within the investigated conditions high quality surface finish was obtained on the machined surface. Increasing cutting speed from 200 to 300 m/min during the process improved the surface finished particularly under lower feed rates. In term of generated surface quality, uncoated H25 grade carbide tools out performed coated F40M grade specifically at the higher cutting conditions. The main damages observed after HSDEM on the surface for all machining conditions contain redeposited materials, feed marks, and tool edge marks. Under both tested feed rates the resultant cutting force decreased by increasing the cutting speeds and uncoated carbide tools provide the lower cutting forces compared to coated types.


2012 ◽  
Vol 565 ◽  
pp. 454-459 ◽  
Author(s):  
Yun Chen ◽  
Huai Zhong Li ◽  
Jun Wang

Titanium alloys are difficult-to-cut materials. This paper presents an experimental study of the effects of different cutting conditions and tool wear on cutting forces in dry milling Ti6Al4V with coated carbide inserts. The experimental results show that the peak forces increase with the increase in the feed rate and depth of cut. With the cutting speed increment in the range from 50 m/min to 150 m/min the peak forces decrease, while at further higher cutting speeds investigated peak forces increase. The decrease of the peak forces is due to thermal softening of the workpiece material and the increase is because of the strain hardening rate of Ti6Al4V. The tool wear experiment reveals that the major tool wear mechanism is the flank wear. The variations of the peak forces are caused by both the tool wear propagation and the thermal effects.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7524
Author(s):  
Bartłomiej Krawczyk ◽  
Piotr Szablewski ◽  
Stanisław Legutko ◽  
Krzysztof Smak ◽  
Bartosz Gapiński

This paper presents the results of investigation that was performed on shafts composed of Inconel 718. Tests were performed in dry and wet conditions. Cutting parameters, such as feed and depth of cut, were constant. The cutting speed was changed. The investigation was performed for various shaft shapes: cylindrical, taper 30°, taper 45°, and sphere. For that reason, the value of the angle between the machined surface and the cutting edge changed. The lowest values of the roughness parameters, Ra and Rz, were obtained for a larger value of the angle between the machined surface and cutting edge. The investigation showed that cutting speed, machining conditions (dry and wet machining), and the variable angle between the machined surface and the cutting edge influenced the surface roughness. Application of a higher cutting speed resulted in lower roughness values. Lower values of roughness parameters were obtained by wet machining.


2010 ◽  
Vol 447-448 ◽  
pp. 46-50 ◽  
Author(s):  
Jen Osmer ◽  
A. Meier ◽  
R. Gläbe ◽  
O. Riemer ◽  
E. Brinksmeier

This paper presents results for the machining of materials typically applied in ultra precision machining in comparison to a nitrocarburized tool steel. Analyzing and evaluating the machining results regarding surface integrity lead to recommendations for the ultra precision machining of this new mold material. The influence of feed, depth of cut and cutting speed on surface quality, resulting cutting forces and tool wear have been investigated. The results show that the decisive factor for the ultra precision machining of nitrocarburized tool steel are the significantly higher cutting forces. In some cases the high cutting forces lead to vibrations during the turning process deteriorating the surface integrity. Therefore, tool nose radius and depth of cut have to be reduced to minimize the cutting forces and avoid the vibrations.


2019 ◽  
Vol 895 ◽  
pp. 26-31
Author(s):  
R. Suresh ◽  
L. Shivaramu ◽  
N.G. Siddesh Kumar ◽  
T.N. Srikantha Dath

In the present study an attempt has been made to investigate the effect of process parameters on surface roughness and cutting forces generation in machining of Duplex Stainless Steel (DSS 2205) grade material with TiN coated carbide tool. Taguchi technique is used for optimizing the process parameters. L27 orthogonal array was used to conduct the experimental trials. Cutting forces recorded using piezo-electric based mill tool dynamometer and surface roughness measured using surface roughness measuring instrument. The obtained results indicated that the cutting force increases with increase in feed rate and depth of cut whereas cutting forces decreases with increase in cutting speed. Surface roughness decreases with increase in cutting speed and low feed rate. Scanning Electroscope Microscopic (SEM) images indicates the feed marks, undeformed material and patches on the machined surface. The formation of material side flow and burrs on the feed marks ridges observed at higher cutting speed, low feed rate and depth of cut. It is mainly due to the material behavior like elastic-plastic deformation of the surface layer. The material side flow causes the considerable deterioration of surface quality of the DSS 2205 steel.


Sign in / Sign up

Export Citation Format

Share Document