scholarly journals Erratum: “Influence of Internal Pressure on the Impact Behavior of Steel Pipelines” (1996, Journal of Pressure Vessel Technology, 118, pp. 464–471)

1997 ◽  
Vol 119 (1) ◽  
pp. 17-17 ◽  
Author(s):  
N. Jones ◽  
R. S. Birch
1996 ◽  
Vol 118 (4) ◽  
pp. 464-471 ◽  
Author(s):  
N. Jones ◽  
R. S. Birch

This article presents some experimental data recorded from 54 impact tests on pressurized mild steel pipes. The pipes were fully clamped across a span which was ten times the outside pipe diameter of 60 mm. The pipes had a wall thickness of 1.70 mm and were impacted laterally by a rigid wedge indenter at the mid-span and one-quarter-span positions. The impact velocities ranged up to 13.6 m/s and caused large inelastic indentations for the lower values and at higher values a loss of integrity which could occur underneath the indenter and/or at an end support. The critical values for the two failure energies were obtained for a range of internal gas pressures.


Author(s):  
Yangqing Dou ◽  
Yucheng Liu

This paper provides a combined computational and analytical study to investigate the lateral impact behavior of pressurized pipelines and inspect all the parameters such as the outside diameter and internal pressure affects such behavior. In this study, quartic polynomial functions are applied to formulate the maximum crushing force (F), maximum permanent displacement (W), and absorbed energy (E) of the pressurized pipelines during the impact problem. The effects of the diameter and pressure on F, W, and E are therefore illustrated through analyzing those functions. Response surfaces are also plotted based on the generated quartic polynomial functions and the quality (accuracy) of those functions are verified through several techniques.


2021 ◽  
pp. 109963622199387
Author(s):  
Mathilde Jean-St-Laurent ◽  
Marie-Laure Dano ◽  
Marie-Josée Potvin

The effect of extreme cold temperatures on the quasi-static indentation and the low velocity impact behavior of woven carbon/epoxy composite sandwich panels with Nomex honeycomb core was investigated. Impact tests were performed at room temperature, –70°C, and –150°C. Two sizes of hemispherical impactor were used combined to three different impactor masses. All the impact tests were performed at the same initial impact velocity. The effect of temperature on the impact behavior is investigated by studying the load history, load-displacement curves and transmitted energy as a function of time curves. Impact damage induced at various temperatures was studied using different non-destructive and destructive techniques. Globally, more damages are induced with impact temperature decreasing. The results also show that the effect of temperature on the impact behavior is function of the impactor size.


2017 ◽  
Vol 52 (18) ◽  
pp. 2431-2442 ◽  
Author(s):  
Harun Sepet ◽  
Necmettin Tarakcioglu ◽  
RDK Misra

The main purpose of this work is to study how the morphology of nanofillers and dispersion and distribution level of inorganic nanofiller influence the impact behavior and fracture probability of inorganic filler filled industrial high-density polyethylene nanocomposites. For this study, nanoclay and nano-CaCO3 fillers–high-density polyethylene mixings (0, 1, 3, 5 wt.% high-density polyethylene) was prepared by melt-mixing method using a compounder system. The impact behavior was examined by charpy impact test, scanning electron microscopy, and probability theory and statistics. The level of the dispersion was characterized with scanning electron microscopy energy dispersive X-ray spectroscopy analysis. The results showed rather good dispersion of both of inorganic nanofiller, with a mixture of exfoliated and confined morphology. The results indicated that the impact strength of the industrial nanocomposite decreased with the increase of inorganic particulate content. The impact reliability of the industrial nanocomposites depends on the type of nanofillers and their dispersion and distribution in the matrix.


Author(s):  
Ali Salehi ◽  
Armin Rahmatfam ◽  
Mohammad Zehsaz

The present study aimed to study ratcheting strains of corroded stainless steel 304LN elbow pipes subjected to internal pressure and cyclic bending moment. To this aim, spherical and cubical shapes corrosion are applied at two depths of 1 mm and 2 mm in the critical points of elbow pipe such as symmetry sites at intrados, extrados, and crown positions. Then, a Duplex 2205 stainless steel elbow pipe is considered as an alternative to studying the impact of the pipe materials, due to its high corrosion resistance and strength, toughness, and most importantly, the high fatigue strength and other mechanical properties than stainless steel 304LN. In order to perform numerical analyzes, the hardening coefficients of the materials were calculated. The results highlight a significant relationship between the destructive effects of corrosion and the depth and shape of corrosion, so that as corrosion increases, the resulting destructive effects increases as well, also, the ratcheting strains in cubic corrosions have a higher growth rate than spherical corrosions. In addition, the growth rate of the ratcheting strains in the hoop direction is much higher across the studied sample than the axial direction. The highest growth rate of hoop strain was observed at crown and the highest growth rate of axial strains occurred at intrados position. Altogether, Duplex 2205 material has a better performance than SS 304LN.


2014 ◽  
Vol 136 (6) ◽  
Author(s):  
Gongfeng Jiang ◽  
Gang Chen ◽  
Liang Sun ◽  
Yiliang Zhang ◽  
Xiaoliang Jia ◽  
...  

Experimental results of uniaxial ratcheting tests for stainless steel 304 (SS304) under stress-controlled condition at room temperature showed that the elastic domain defined in this paper expands with accumulation of plastic strain. Both ratcheting strain and viscoplastic strain rates reduce with the increase of elastic domain, and the total strain will be saturated finally. If the saturated strain and corresponded peak stress of different experimental results under the stress ratio R ≥ 0 are plotted, a curve demonstrating the material shakedown states of SS304 can be constituted. Using this curve, the accumulated strain in a pressure vessel subjected to cyclic internal pressure can be determined by only an elastic-plastic analysis, and without the cycle-by-cycle analysis. Meanwhile, a physical experiment of a thin-walled pressure vessel subjected to cyclic internal pressure has been carried out to verify the feasibility and effectiveness of this noncyclic method. By comparison, the accumulated strains evaluated by the noncyclic method agreed well with those obtained from the experiments. The noncyclic method is simpler and more practical than the cycle-by-cycle method for engineering design.


2018 ◽  
Vol 51 (1) ◽  
pp. 64-74 ◽  
Author(s):  
Akar Dogan ◽  
Yusuf Arman

In this study, the effects of temperature and impactor nose diameter on the impact behavior of woven glass-reinforced polyamide 6 (PA6) and polypropylene (PP) thermoplastic composites were investigated experimentally. Impact energies are chosen as 10, 30, 50, 70, 90, 110, 130, and 170 J. The thickness of composite materials is 4 mm. Impact tests were performed using a drop weight impact testing machine, CEAST-Fractovis Plus, and the load capacity of test machine is 22 kN. Hemispherical impactor nose diameter of 12, 7, and 20 mm were used as an impactor. The tests are conducted at room temperature (20°C and 75°C). As a result, the PP composites of the same thickness absorbed more energy than PA6 composites. The amount of absorbed energy of PP and PA6 composites decreased with temperature.


2015 ◽  
Vol 76 (3) ◽  
Author(s):  
Norazean Shaari ◽  
Aidah Jumahat ◽  
M. Khafiz M. Razif

In this paper, the impact behavior of Kevlar/glass fiber hybrid composite laminates was investigated by performing the drop weight impact test (ASTM D7136). Composite laminates were fabricated using vacuum bagging process with an epoxy matrix reinforced with twill Kevlar woven fiber and plain glass woven fiber. Four different types of composite laminates with different ratios of Kevlar to glass fiber (0:100, 20:80, 50:50 and 100:0) were manufactured. The effect of Kevlar/glass fiber content on the impact damage behavior was studied at 43J nominal impact energy. Results indicated that hybridization of Kevlar fiber to glass fiber improved the load carrying capability, energy absorbed and damage degree of composite laminates with a slight reduction in deflection. These results were further supported through the damage pattern analysis, depth of penetration and X-ray evaluation tests. Based on literature work, studies that have been done to investigate the impact behaviour of woven Kevlar/glass fiber hybrid composite laminates are very limited. Therefore, this research concentrates on the effect of Kevlar on the impact resistance properties of woven glass fibre reinforced polymer composites.


Sign in / Sign up

Export Citation Format

Share Document