State Estimation Using Randomly Delayed Measurements

1993 ◽  
Vol 115 (1) ◽  
pp. 19-26 ◽  
Author(s):  
A. Ray ◽  
L. W. Liou ◽  
J. H. Shen

This paper presents a modification of the conventional minimum variance state estimator to accommodate the effects of randomly varying delays in arrival of sensor data at the controller terminal. In this approach, the currently available sensor data is used at each sampling instant to obtain the state estimate which, in turn, can be used to generate the control signal. Recursive relations for the filter dynamics have been derived, and the conditions for uniform asymptotic stability of the filter have been conjectured. Results of simulation experiments using a flight dynamic model of advanced aircraft are presented for performance evaluation of the state estimation filter.

Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 651
Author(s):  
Wouter Schinkel ◽  
Tom van der Sande ◽  
Henk Nijmeijer

A cooperative state estimation framework for automated vehicle applications is presented and demonstrated via simulations, the estimation framework is used to estimate the state of a lead and following vehicle simultaneously. Recent developments in the field of cooperative driving require novel techniques to ensure accurate and stable vehicle following behavior. Control schemes for the cooperative control of longitudinal and lateral vehicle dynamics generally require vehicle state information about the lead vehicle, which in some cases cannot be accurately measured. Including vehicle-to-vehicle communication in the state estimation process can provide the required input signals for the practical implementation of cooperative control schemes. This study is focused on demonstrating the benefits of using vehicle-to-vehicle communication in the state estimation of a lead and following vehicle via simulations. The state estimator, which uses a cascaded Kalman filtering process, takes the operating frequencies of different sensors into account in the estimation process. Simulation results of three different driving scenarios demonstrate the benefits of using vehicle-to-vehicle communication as well as the attenuation of measurement noise. Furthermore, in contrast to relying on low frequency measurement data for the input signals of cooperative control schemes, the state estimator provides a state estimate at every sample.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2976 ◽  
Author(s):  
Yali Ruan ◽  
Yingting Luo ◽  
Yunmin Zhu

In this paper, the state estimation for dynamic system with unknown inputs modeled as an autoregressive AR (1) process is considered. We propose an optimal algorithm in mean square error sense by using difference method to eliminate the unknown inputs. Moreover, we consider the state estimation for multisensor dynamic systems with unknown inputs. It is proved that the distributed fused state estimate is equivalent to the centralized Kalman filtering using all sensor measurement; therefore, it achieves the best performance. The computation complexity of the traditional augmented state algorithm increases with the augmented state dimension. While, the new algorithm shows good performance with much less computations compared to that of the traditional augmented state algorithms. Moreover, numerical examples show that the performances of the traditional algorithms greatly depend on the initial value of the unknown inputs, if the estimation of initial value of the unknown input is largely biased, the performances of the traditional algorithms become quite worse. However, the new algorithm still works well because it is independent of the initial value of the unknown input.


2011 ◽  
Vol 139 (11) ◽  
pp. 3571-3588 ◽  
Author(s):  
Daniel Hodyss

Abstract A new framework is presented for understanding how a nonnormal probability density function (pdf) may affect a state estimate and how one might usefully exploit the nonnormal properties of the pdf when constructing a state estimate. A Bayesian framework is constructed that naturally leads to an expansion of the expected forecast error in a polynomial series consisting of powers of the innovation vector. This polynomial expansion in the innovation reveals a new view of the geometric nature of the state estimation problem. It is shown that this expansion in powers of the innovation provides a direct relationship between a nonnormal pdf describing the likely distribution of states and a normal pdf determined by powers of the forecast error. One implication of this perspective is that when state estimation is performed on a nonnormal pdf it leads to state estimates based on the mean to be nonlinear functions of the innovation. A direct relationship is shown between the degree to which the state estimate varies with the innovation and the moments of the distribution. These and other implications of this new view of ensemble state estimation in nonlinear systems are illustrated in simple scalar systems as well as on the Lorenz attractor.


Author(s):  
Rama Rao Karri

Successful operation and control of complex dynamic systems heavily rely on the availability of fast and accurate evaluation of the system performance. The measurement problems and the delays associated with these systems require the need for on-line state estimators as alternative measurement tools. In this work, a state estimation method based on extended Kalman filter (EKF) is presented for nonlinear dynamical systems that are characterized by complex dynamic phenomena such as multiple steady state behavior, limit cycle oscillations and chaos. The estimator uses the mathematical model of the process in conjunction with the known process measurements to provide the unmeasured process states that capture the fast changing nonlinear dynamics of the process. The design and performance of the state estimator is evaluated by applying two typical continuous non-isothermal nonlinear processes, a chemical reactor and a polymerization reactor, which show rich dynamical behavior ranging from stable situations to chaos. In order to understand the dynamic phenomena and to analyze the conditions that lead to an improved operation, prior to state estimation, these processes are thoroughly analyzed for multiplicity, stability and bifurcation studies. The sensitivity of the state estimator is also studied towards the effect of the design parameters involved in the method. The results demonstrate the efficacy of the model based method for state estimation in nonlinear chemical processes associated with complex dynamic behavior.


2018 ◽  
Vol 41 (2) ◽  
pp. 582-590 ◽  
Author(s):  
Bin Hu ◽  
Zhiping Shen ◽  
Weizhou Su

In this paper, we study the state estimation for a linear time-invariant (LTI) discrete-time system with quantized measurements. The quantization law under consideration has a time-varying data rate. To cope with nonlinearities in quantization laws and to analyse stability in the state estimation problem, a Kalman-filter-based sub-optimal state estimator is developed and an upper bound of its estimation error covariance is minimized. It turns out that, to guarantee the convergence of the upper bound, the averaged data rate of the quantization law must be greater than a minimum rate. This minimum data rate for the quantization law is presented in terms of the poles of the system and design parameters in the state estimator. Numerical examples are presented to illustrate the results in this work.


Author(s):  
Khurram Ali ◽  
Muhammad Tahir

In this paper, a novel approach towards horizon-based maximum likelihood (ML) state estimator is proposed that makes the state estimation process more robust against unmodeled and unstructured noise and disturbances in the state-space models. State space models provide a powerful way to perform state and parameter estimation for dynamical systems. However, if the measurements are contaminated by outliers and disturbances with no known models, the estimation process is highly biased. A ML-based approach is used to find a batch solution for the filtering problem. Based on ML solution, a robust algorithm is proposed that seamlessly estimates dynamic state in the presence of zero or non-zero mean measurement outliers. The proposed algorithm that dictates this switching uses an explicit outlier detection mechanism that enables its seamless working. Simulations have been carried out for a moving target tracking application as an example to demonstrate the resilience of the proposed method against zero-mean and non-zero mean measurement outliers in comparison to state-of-the-art methods.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6787
Author(s):  
Arturo S. Bretas ◽  
Newton G. Bretas ◽  
Julio A. D. Massignan ◽  
João B. A. London Junior

State-of-the art physics-model based dynamic state estimation generally relies on the assumption that the system’s transition matrix is always correct, the one that relates the states in two different time instants, which might not hold always on real-life applications. Further, while making such assumptions, state-of-the-art dynamic state estimation models become unable to discriminate among different types of anomalies, as measurement gross errors and sudden load changes, and thus automatically leads the state estimator framework to inaccuracy. Towards the solution of this important challenge, in this work, a hybrid adaptive dynamic state estimator framework is presented. Based on the Kalman Filter formulation, measurement innovation analytical-based tests are presented and integrated into the state estimator framework. Gross measurement errors and sudden load changes are automatically detected, identified, and corrected, providing continuous updating of the state estimator. Towards such, the asymmetry index applied to the measurement innovation is introduced, as an anomaly discrimination method, which assesses the physics-model-based dynamic state estimation process in different piece-wise stationary levels. Comparative tests with the state-of-the-art are presented, considering the IEEE 14, IEEE 30, and IEEE 118 test systems. Easy-to-implement-model, without hard-to-design parameters, build-on the classical Kalman Filter solution, highlights potential aspects towards real-life applications.


2018 ◽  
Vol 6 (6) ◽  
pp. 24-34
Author(s):  
Irina N. KOLOSOK ◽  
◽  
Elena S. KORKINA ◽  
Alexandr V. TIKHONOV ◽  
◽  
...  

2019 ◽  
Vol XVI (4) ◽  
pp. 53-65
Author(s):  
Zahid Khan ◽  
Katrina Lane Krebs ◽  
Sarfaraz Ahmad ◽  
Misbah Munawar

State estimation (SE) is a primary data processing algorithm which is utilised by the control centres of advanced power systems. The most generally utilised state estimator is based on the weighted least squares (WLS) approach which is ineffective in addressing gross errors of input data of state estimator. This paper presents an innovative robust estimator for SE environments to overcome the non-robustness of the WLS estimator. The suggested approach not only includes the similar functioning of the customary loss function of WLS but also reflects loss function built on the modified WLS (MWLS) estimator. The performance of the proposed estimator was assessed based on its ability to decrease the impacts of gross errors on the estimation results. The properties of the suggested state estimator were investigated and robustness of the estimator was studied considering the influence function. The effectiveness of the proposed estimator was demonstrated with the help of examples which also indicated non-robustness of MWLS estimator in SE algorithm.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1967
Author(s):  
Gaurav Kumar Roy ◽  
Marco Pau ◽  
Ferdinanda Ponci ◽  
Antonello Monti

Direct Current (DC) grids are considered an attractive option for integrating high shares of renewable energy sources in the electrical distribution grid. Hence, in the future, Alternating Current (AC) and DC systems could be interconnected to form hybrid AC-DC distribution grids. This paper presents a two-step state estimation formulation for the monitoring of hybrid AC-DC grids. In the first step, state estimation is executed independently for the AC and DC areas of the distribution system. The second step refines the estimation results by exchanging boundary quantities at the AC-DC converters. To this purpose, the modulation index and phase angle control of the AC-DC converters are integrated into the second step of the proposed state estimation formulation. This allows providing additional inputs to the state estimation algorithm, which eventually leads to improve the accuracy of the state estimation results. Simulations on a sample AC-DC distribution grid are performed to highlight the benefits resulting from the integration of these converter control parameters for the estimation of both the AC and DC grid quantities.


Sign in / Sign up

Export Citation Format

Share Document