The Mean Flow Structure on the Symmetry Plane of a Turbulent Junction Vortex

1990 ◽  
Vol 112 (1) ◽  
pp. 16-22 ◽  
Author(s):  
F. J. Pierce ◽  
I. K. Tree

The mean flow structure on the symmetry plane of a turbulent junction vortex is documented. A two-channel, two-color LDV system allowed nonintrusive measurements of the two velocity components on the symmetry plane. Extensive measurements were made in and around the separation point and within the junction vortex system, both very close to the floor and to the leading edge of the body generating the vortex system. Real-time smoke visualizations confirmed a region of strongly time-variant flow with large changes in the scale and position of the principal vortex structure. The extensive velocity field data are correlated with high quality surface visualizations and surface pressure measurements. The mean velocity measurements show one large well-defined vortex structure and one singular saddle point of separation on the symmetry plane. The transverse vorticity field computed from the extensive velocity field suggests a very strong but small second, counter rotating vortex located in the extreme corner formed by the floor and leading edge of the body. The surface flow visualization suggests only one clear separation line. The single pair of counter rotating vortices revealed by these detailed LDV velocity measurements is in agreement with two independent studies which used multiple orifice pressure probes. This measured two vortex model is not in agreement with the frequently pictured four vortex flow model, inferred from surface flow visualizations, showing two pairs of counter rotating vortices.

1992 ◽  
Vol 114 (4) ◽  
pp. 559-565 ◽  
Author(s):  
F. J. Pierce ◽  
J. Shin

The growth and development of a horseshoe vortex system in an incompressible, three-dimensional turbulent junction flow were investigated experimentally. A streamlined cylinder mounted with its axis normal to a flat surface was used to generate the junction vortex flow. The flow environment was characterized by a body Reynolds number of 183,000, based on the leading edge diameter of the streamlined cylinder. The study included surface flow visualizations, surface pressure measurements, and mean flow measurements of total pressure, static pressure, and velocity distributions in three planes around the base of the streamlined cylinder, and in two planes in the wake flow. Some characterizations of vortex properties based on the measured mean cross-flow velocity components are presented. The results show the presence of a single large, dominant vortex, with strong evidence of a very small corner vortex in the junction between the cylinder and the flat surface. The center of the dominant vortex drifts away from both the body and the flat surface as the flow develops along and downstream of the body. The growth and development of the core of the large, dominant vortex are documented.


Author(s):  
Noorallah Rostamy ◽  
David Sumner ◽  
Donald J. Bergstrom ◽  
James D. Bugg

The flow above the free end of a surface-mounted finite-height circular cylinder was studied in a low-speed wind tunnel using particle image velocimetry (PIV). The cylinder was mounted vertically in the wind tunnel, normal to a ground plane. The approaching flow was in the x-direction and the cylinder axis was aligned in the z-direction. Velocity measurements were made above the free-end surface in several vertical (x-z) planes and several horizontal (x-y) planes, for finite circular cylinders of aspect ratios AR = 9, 7, 5 and 3, at a Reynolds number of Re = 4.2×104. The relative thickness of the boundary layer on the ground plane was δ/D = 1.7. In the vertical symmetry plane, the mean velocity measurements show the prominent separation from the circumferential leading edge, the mean recirculation zone above the free-end surface, the arch vortex inside the recirculation zone, and reattachment of the flow onto the free-end surface. Experimental evidence is found for a leading-edge separation bubble, a flow structure which has been reported in some numerical simulations in the literature. As AR decreases, the reattachment point and the centre of the arch vortex move downstream, the recirculation zone becomes thicker, and the centre of the arch vortex moves higher above the free end. Away from the symmetry plane, the recirculation zone becomes thinner, the arch vortex centre moves upstream and closer to the free-end surface, and the reattachment point moves upstream. In the horizontal planes, measurements made very close to the surface can approximate the mean surface streamline topology, revealing the pair of foci representing the termination points of the arch vortex, the prominent curved reattachment line, reverse flow beneath the mean recirculation zone, and the reattachment and separation saddle points on the free-end centerline.


1999 ◽  
Vol 394 ◽  
pp. 303-337 ◽  
Author(s):  
A. VERNET ◽  
G. A. KOPP ◽  
J. A. FERRÉ ◽  
FRANCESC GIRALT

Simultaneous velocity and temperature measurements were made with rakes of sensors that sliced a slightly heated turbulent wake in the spanwise direction, at different lateral positions 150 diameters downstream of the cylinder. A pattern recognition analysis of hotter-to-colder transitions was performed on temperature data measured at the mean velocity half-width. The velocity data from the different ‘slices’ was then conditionally averaged based on the identified temperature events. This procedure yielded the topology of the average three-dimensional large-scale structure which was visualized with iso-surfaces of negative values of the second eigenvector of [S2+Ω2]. The results indicate that the average structure of the velocity fluctuations (using a triple decomposition of the velocity field) is found to be a shear-aligned ring-shaped vortex. This vortex ring has strong outward lateral velocities in its symmetry plane which are like Grant's mixing jets. The mixing jet region extends outside the ring-like vortex and is bounded by two foci separated in the spanwise direction and an upstream saddle point. The two foci correspond to what has been previously identified in the literature as the double rollers.The ring vortex extracts energy from the mean flow by stretching in the mixing jet region just upstream of the ring boundary. The production of the small-scale (incoherent) turbulence by the coherent field and one-component energy dissipation rate occur just downstream of the saddle point within the mixing jet region. Incoherent turbulence energy is extracted from the mean flow just outside the mixing jet region, but within the core of the structure. These processes are highly three-dimensional with a spanwise extent equal to the mean velocity half-width.When a double decomposition is used, the coherent structure is found to be a tube-shaped vortex with a spanwise extent of about 2.5l0. The double roller motions are integral to this vortex in spite of its shape. Spatial averages of the coherent velocity field indicate that the mixing jet region causes a deficit of mean streamwise momentum, while the region outside the foci of the double rollers has a relatively small excess of streamwise momentum.


1988 ◽  
Vol 197 ◽  
pp. 429-451 ◽  
Author(s):  
Donald B. Altman

A series of laboratory experiments on accelerating two-layer shear flows over topography is described. The mean flow reverses at the interface of the layers, forcing a critical layer to occur there. It is found that for a sufficiently thin interface, a slowly growing recirculating region, the ‘acceleration rotor’, develops on the interfacial wave at mean-flow Richardson numbers of O(0.5). This, in turn, can induce a secondary dynamical shear instability on the trailing edge of the wave. A single-mode, linear, two-layer numerical model reproduces many features of the acceleration rotor if mean-flow acceleration and bottom forcing are included. Velocity measurements are obtained from photographs using image processing software developed for the automated reading of particle-streak photographs. Typical results are shown.


1989 ◽  
Vol 209 ◽  
pp. 385-403 ◽  
Author(s):  
H. M. Atassi ◽  
J. Grzedzinski

For small-amplitude vortical and entropic unsteady disturbances of potential flows, Goldstein proposed a partial splitting of the velocity field into a vortical part u(I) that is a known function of the imposed upstream disturbance and a potential part ∇ϕ satisfying a linear inhomogeneous wave equation with a dipole-type source term. The present paper deals with flows around bodies with a stagnation point. It is shown that for such flows u(I) becomes singular along the entire body surface and its wake and as a result ∇ϕ will also be singular along the entire body surface. The paper proposes a modified splitting of the velocity field into a vortical part u(R) that has zero streamwise and normal components along the body surface, an entropy-dependent part and a regular part ∇ϕ* that satisfies a linear inhomogeneous wave equation with a modified source term.For periodic disturbances, explicit expressions for u(R) are given for three-dimensional flows past a single obstacle and for two-dimensional mean flows past a linear cascade. For weakly sheared flows, it is shown that if the mean flow has only a finite number of isolated stagnation points, u(R) will be finite along the body surface. On the other hand, if the mean flow has a stagnation line along the body surface such as in two-dimensional flows then the component of u(R) in this direction will have a logarithmic singularity.For incompressible flows, the boundary-value problem for ϕ* is formulated in terms of an integral equation of the Fredholm type. The theory is applied to a typical bluff body. Detailed calculations are carried out to show the velocity and pressure fields in response to incident harmonic disturbances.


Author(s):  
A. R. Bestman

AbstractFluid motion established by an oscillatory pressure gradient superimposed on a mean, in a tube of slowly varying section, is studied when the temperature of the tube wall varies with axial distance. Particular attention is focussed on the mean flow and steady streaming components of the oscillatory flow of higher approximation. For the velocity components, the axial component takes the pride of place, since this component is responsible for convection of nutrients to various parts of the body of a mammal in systematic circulation. A salient point in the paper concerns consequences of free convection currents at a constriction (stenosis).


Author(s):  
Davis W. Hoffman ◽  
Laura Villafañe ◽  
Christopher J. Elkins ◽  
John K. Eaton

Abstract Three-dimensional, three-component time-averaged velocity fields have been measured within a low-speed centrifugal fan with forward curved blades. The model investigated is representative of fans commonly used in automotive HVAC applications. The flow was analyzed at two Reynolds numbers for the same ratio of blade rotational speed to outlet flow velocity. The flow patterns inside the volute were found to have weak sensitivity to Reynolds number. A pair of counter-rotating vortices evolve circumferentially within the volute with positive and negative helicity in the upper and lower regions, respectively. Measurements have been further extended to capture phase-resolved flow features by synchronizing the data acquisition with the blade passing frequency. The mean flow field through each blade passage is presented including the jet-wake structure extending from the blade and the separation zone on the suction side of the blade leading edge.


Author(s):  
A. Shinneeb ◽  
J. D. Bugg ◽  
R. Balachandar

This paper reports PIV measurements made at three locations in an axisymmetric, confined jet that is approaching a free surface from below. The apparatus consists of a tank 40.5 cm × 40.5 cm at its base and 61 cm high. A 9 mm diameter nozzle is centered in the base of the tank and directs a jet of water upwards. The jet produced has a top-hat velocity profile with a maximum deviation of 0.32% of the mean and an axial relative turbulence intensity of 0.60%. The water is removed from the tank by an overflow around the perimeter of the tank. The PIV measurements achieved a spatial resolution of between 0.425–1.08 mm. The measurements show details of the velocity field in three regions of the flow; at the jet exit, near the surface on the centerline of the jet, and near the top corner of the tank. The centerline velocity remains at the exit velocity until ≈5D from the exit. The axial confinement of the jet begins to significantly influence the centerline velocity at ≈13D from the free surface. All entrained fluid is deflected downward from the horizontal surface flow as it approaches the overflow around the perimeter of the tank. This creates a large recirculation region in the upper region of the tank driven by the downward flow along the wall and the upward flow of the jet itself at the center of the tank.


2017 ◽  
Vol 814 ◽  
pp. 547-569 ◽  
Author(s):  
Roberto Muscari ◽  
Giulio Dubbioso ◽  
Andrea Di Mascio

The vortex–body interaction problem, which characterizes the flow field of a rudder placed downstream of a single-blade marine rotor, is investigated by numerical simulations. The particular topology of the propeller wake, consisting of a helicoidal vortex detached from the blade tips (tip vortex) and a longitudinal, streamwise oriented vortex originating at the hub (hub vortex), embraces two representative mechanisms of vortex–body collisions: the tip vortices impact almost orthogonally to the mean plane, whereas the hub vortex travels in the mean plane of the wing (rudder), perpendicularly to its leading edge. The two vortices evolve independently only during the approaching and collision phases. The passage along the body is instead characterized by strong interaction with the boundary layer on the rudder and is followed by reconnection and merging in the middle and far wake. The features of the wake were investigated by the $\unicode[STIX]{x1D706}_{2}$-criterion (Jeong & Hussain, J. Fluid Mech., vol. 285, 1995, pp. 69–94) and typical flow variables (pressure, velocity and vorticity) of the instantaneous flow field; wall pressure spectra were analysed and related to the tip and hub vortices evolution, revealing a non-obvious behaviour of the loading on the rudder that can be related to undesired unsteady loads.


2007 ◽  
Vol 51 (01) ◽  
pp. 65-75
Author(s):  
Spyros A. Kinnas ◽  
Hanseong Lee ◽  
Hua Gu ◽  
Shreenaath Natarajan

This paper presents two numerical methods, a vortex lattice method (MPUF-3A) coupled with a finite volume method (GBFLOW-3D) and a boundary element method (PROPCAV), which are applied to predict time-averaged sheet cavitation on rudders, including the effects of the propeller as well as of the tunnel walls. The coupled MPUF-3A and GBFLOW-3D determines the velocity field due to the propeller within the fluid domain bounded by tunnel walls. MPUF-3A solves the potential flow around the propeller by distributing the line vortices and sources on the blade mean camber surface and determines the pressure distributions on the blade surface. GBFLOW-3D solves Euler equations with the body force terms converted from the pressure distributions on the blade surface and determines the total velocity field inside the fluid domain. The tunnel walls are treated as a solid boundary by applying the slip boundary condition, and the propeller blades are modeled via body forces. The two methods are solved iteratively until the forces on the blade converge. The cavity prediction on the rudder is accomplished via PROPCAV, which can handle back and face leading edge or mid-chord cavitation, in the presence of the three-dimensional flow field determined by the coupled MPUF-3A and GBFLOW-3D. The present method is validated by comparing the cavity shapes and the cavity envelope with those observed and measured in experiment and computed by another method.


Sign in / Sign up

Export Citation Format

Share Document