Respiratory System Model for Quasistatic Pulmonary Pressure-Volume (P-V) Curve: Inflation-Deflation Loop Analyses

2008 ◽  
Vol 130 (3) ◽  
Author(s):  
R. Amini ◽  
U. Narusawa

A respiratory system model (RSM) is developed for the deflation process of a quasistatic pressure-volume (P-V) curve, following the model for the inflation process reported earlier. In the RSM of both the inflation and the deflation limb, a respiratory system consists of a large population of basic alveolar elements, each consisting of a piston-spring-cylinder subsystem. A normal distribution of the basic elements is derived from Boltzmann statistical model with the alveolar closing (opening) pressure as the distribution parameter for the deflation (inflation) process. An error minimization by the method of least squares applied to existing P-V loop data from two different data sources confirms that a simultaneous inflation-deflation analysis is required for an accurate determination of RSM parameters. Commonly used terms such as lower inflection point, upper inflection point, and compliance are examined based on the P-V equations, on the distribution function, as well as on the geometric and physical properties of the basic alveolar element.

2001 ◽  
Vol 91 (1) ◽  
pp. 441-450 ◽  
Author(s):  
M. Mergoni ◽  
A. Volpi ◽  
C. Bricchi ◽  
A. Rossi

The lower inflection point (LIP) on the total respiratory system pressure-volume (P-V) curve is widely used to set positive end-expiratory pressure (PEEP) in patients with acute respiratory failure (ARF) on the assumption that LIP represents alveolar recruitment. The aims of this work were to study the relationship between LIP and recruited volume (RV) and to propose a simple method to quantify the RV. In 23 patients with ARF, respiratory system P-V curves were obtained by means of both constant-flow and rapid occlusion technique at four different levels of PEEP and were superimposed on the same P-V plot. The RV was measured as the volume difference at a pressure of 20 cmH2O. A third measurement of the RV was done by comparing the exhaled volumes after the same distending pressure of 20 cmH2O was applied (equal pressure method). RV increased with PEEP ( P < 0.0001); the equal pressure method compares favorably with the other methods ( P = 0.0001 by correlation), although individual data cannot be superimposed. No significant difference was found when RV was compared with PEEP in the group of patients with a LIP ≤5 cmH2O and the group with a LIP >5 cmH2O (76.9 ± 94.3 vs. 61.2 ± 51.3, 267.7 ± 109.9 vs. 209.6 ± 73.9, and 428.2 ± 216.3 vs. 375.8 ± 145.3 ml with PEEP of 5, 10, and 15 cmH2O, respectively). A RV was found even when a LIP was not present. We conclude that the recruitment phenomenon is not closely related to the presence of a LIP and that a simple method can be used to measure RV.


2003 ◽  
Vol 95 (5) ◽  
pp. 2064-2071 ◽  
Author(s):  
Cécile Pereira ◽  
Julien Bohé ◽  
Sylvaine Rosselli ◽  
Emmanuel Combourieu ◽  
Christian Pommier ◽  
...  

To assess incidence and magnitude of the “lower inflection point” of the chest wall, the sigmoidal equation was used in 36 consecutive patients intubated and mechanically ventilated with acute lung injury (ALI). They were 21 primary and 5 secondary ALI, 6 unilateral pneumonia, and 4 cardiogenic pulmonary edema. The lower inflection point was estimated as the point of maximal compliance increase. The low constant flow inflation method and esophageal pressure were used to partition the volume-pressure curves into their chest wall and lung components on zero end-expiratory pressure. The sigmoidal equation had an excellent fit with coefficients of determination >0.90 in all instances. The point of maximal compliance increase of the chest wall ranged from 0 to 8.3 cmH2O (median 1 cmH2O) with no difference between ALI groups. The chest wall significantly contributed to the lower inflection point of the respiratory system in eight patients only. The occurrence of a significant contribution of the chest wall to the lower inflection point of the respiratory system is lower than anticipated. The sigmoidal equation is able to determine precisely the point of the maximal compliance increase of lung and chest wall.


Author(s):  
R.D. Leapman ◽  
P. Rez ◽  
D.F. Mayers

Microanalysis by EELS has been developing rapidly and though the general form of the spectrum is now understood there is a need to put the technique on a more quantitative basis (1,2). Certain aspects important for microanalysis include: (i) accurate determination of the partial cross sections, σx(α,ΔE) for core excitation when scattering lies inside collection angle a and energy range ΔE above the edge, (ii) behavior of the background intensity due to excitation of less strongly bound electrons, necessary for extrapolation beneath the signal of interest, (iii) departures from the simple hydrogenic K-edge seen in L and M losses, effecting σx and complicating microanalysis. Such problems might be approached empirically but here we describe how computation can elucidate the spectrum shape.The inelastic cross section differential with respect to energy transfer E and momentum transfer q for electrons of energy E0 and velocity v can be written as


Author(s):  
M.A. Gribelyuk ◽  
M. Rühle

A new method is suggested for the accurate determination of the incident beam direction K, crystal thickness t and the coordinates of the basic reciprocal lattice vectors V1 and V2 (Fig. 1) of the ZOLZ plans in pixels of the digitized 2-D CBED pattern. For a given structure model and some estimated values Vest and Kest of some point O in the CBED pattern a set of line scans AkBk is chosen so that all the scans are located within CBED disks.The points on line scans AkBk are conjugate to those on A0B0 since they are shifted by the reciprocal vector gk with respect to each other. As many conjugate scans are considered as CBED disks fall into the energy filtered region of the experimental pattern. Electron intensities of the transmitted beam I0 and diffracted beams Igk for all points on conjugate scans are found as a function of crystal thickness t on the basis of the full dynamical calculation.


Author(s):  
F.A. Ponce ◽  
H. Hikashi

The determination of the atomic positions from HRTEM micrographs is only possible if the optical parameters are known to a certain accuracy, and reliable through-focus series are available to match the experimental images with calculated images of possible atomic models. The main limitation in interpreting images at the atomic level is the knowledge of the optical parameters such as beam alignment, astigmatism correction and defocus value. Under ordinary conditions, the uncertainty in these values is sufficiently large to prevent the accurate determination of the atomic positions. Therefore, in order to achieve the resolution power of the microscope (under 0.2nm) it is necessary to take extraordinary measures. The use of on line computers has been proposed [e.g.: 2-5] and used with certain amount of success.We have built a system that can perform operations in the range of one frame stored and analyzed per second. A schematic diagram of the system is shown in figure 1. A JEOL 4000EX microscope equipped with an external computer interface is directly linked to a SUN-3 computer. All electrical parameters in the microscope can be changed via this interface by the use of a set of commands. The image is received from a video camera. A commercial image processor improves the signal-to-noise ratio by recursively averaging with a time constant, usually set at 0.25 sec. The computer software is based on a multi-window system and is entirely mouse-driven. All operations can be performed by clicking the mouse on the appropiate windows and buttons. This capability leads to extreme friendliness, ease of operation, and high operator speeds. Image analysis can be done in various ways. Here, we have measured the image contrast and used it to optimize certain parameters. The system is designed to have instant access to: (a) x- and y- alignment coils, (b) x- and y- astigmatism correction coils, and (c) objective lens current. The algorithm is shown in figure 2. Figure 3 shows an example taken from a thin CdTe crystal. The image contrast is displayed for changing objective lens current (defocus value). The display is calibrated in angstroms. Images are stored on the disk and are accessible by clicking the data points in the graph. Some of the frame-store images are displayed in Fig. 4.


2018 ◽  
Vol 28 ◽  
pp. 35-42
Author(s):  
David Black ◽  
Bryan Found ◽  
Doug Rogers

Forensic Document Examiners (FDEs) examine the physical morphology and performance attributes of a line trace when comparing questioned to specimen handwriting samples for the purpose of determining authorship. Along with spatial features, the elements of execution of the handwriting are thought to provide information as to whether or not a questioned sample is the product of a disguise or simulation process. Line features such as tremor, pen-lifts, blunt beginning and terminating strokes, indicators of relative speed, splicing and touch ups, are subjectively assessed and used in comparisons by FDEs and can contribute to the formation of an opinion as to the validity of a questioned sample of handwriting or signatures. In spite of the routine use of features such as these, there is little information available regarding the relative frequency of occurrence of these features in populations of disguised and simulated samples when compared to a large population of a single individual’s signature. This study describes a survey of the occurrence of these features in 46 disguised signatures, 620 simulated signatures (produced by 31 different amateur forgers) and 177 genuine signatures. It was found that the presence of splices and touch-ups were particularly good predictors of the simulation process and that all line quality parameters were potentially useful contributors in the determination of the authenticity of questioned signatures. Purchase Article - $10


Sign in / Sign up

Export Citation Format

Share Document