The Effect of Journal Misalignment on the Operation of a Turbulent Flow Hydrostatic Bearing

1993 ◽  
Vol 115 (3) ◽  
pp. 355-363 ◽  
Author(s):  
Luis San Andres

An analysis for calculation of the dynamic force and moment response in turbulent flow, orifice compensated hydrostatic journal bearings is presented. The fully developed flow of a barotropic liquid is described by variable properties, bulk-flow equations and local turbulent friction factors based on bearing surface condition. Bearing load and moments and, dynamic force and moment coefficients are calculated for perturbations in journal center displacements and misaligned journal axis rotations. Numerical results for the effect of static misalignment angles in the plane of the eccentricity vector are presented for a water lubricated hydrostatic bearing. The predictions show that journal axis misalignment causes a reduction in load capacity due to loss in film thickness, increases the flow rate and produces significant restoring moments (couples). Force and moment coefficients due to dynamic journal axis rotations are also discussed.

1990 ◽  
Vol 112 (4) ◽  
pp. 699-707 ◽  
Author(s):  
Luis San Andre´s

High speed hybrid bearings for cryogenic applications demand large levels of external pressurization to provide substantial load capacity. These conditions give rise to large film Reynolds numbers, and thus, cause the fluid flow within the bearing film to be turbulent and dominated by fluid inertia effects both at the recess edges and at the thin film lands. The analysis includes the effect of recess fluid compressibility and a model for the pressure rise within the recess region. Flow turbulence is simulated by friction factors dependent on the local Reynolds numbers and surface conditions. A perturbation method is used to calculate the zeroth and first flow fields and determine the bearing steady-state and dynamic force response. Comparison of results with existing experimental data shows the accuracy of the present full inertial-turbulent analysis. A roughened bearing surface is shown to improve considerably the stability characteristics of hybrid bearings operating at high speeds.


1972 ◽  
Vol 94 (2) ◽  
pp. 136-142 ◽  
Author(s):  
L. J. Nypan ◽  
B. J. Hamrock ◽  
H. W. Scibbe ◽  
W. J. Anderson

Equations for the flow rate, load capacity, and friction torque for a conical hydrostatic bearing were developed. These equations were solved by a digital computer program to determine bearing configurations for minimum friction torque. Design curves are presented that show optimal bearing dimensions for minimum friction torque as a function of dimensionless flow rate for a range of dimensionless load capacity. Results are shown for both laminar and turbulent flow conditions. The results indicate the hydrostatic pocket friction is a significant portion of the total friction torque. However, the bearing dimensions for a minimum friction design are affected very little by inclusion of pocket friction in the analysis. For laminar flow the values of the outerland radius ratio X3 and outer bearing radius ratio X4 did not change significantly with increasing friction factor. For turbulent flow, the outer bearing radius ratio X4 did not change with increasing friction factor; therefore, the value determined for X4 in the laminar flow case is valid for all turbulent flows.


2010 ◽  
Vol 132 (7) ◽  
Author(s):  
Henrique Stel ◽  
Rigoberto E. M. Morales ◽  
Admilson T. Franco ◽  
Silvio L. M. Junqueira ◽  
Raul H. Erthal ◽  
...  

This article describes a numerical and experimental investigation of turbulent flow in pipes with periodic “d-type” corrugations. Four geometric configurations of d-type corrugated surfaces with different groove heights and lengths are evaluated, and calculations for Reynolds numbers ranging from 5000 to 100,000 are performed. The numerical analysis is carried out using computational fluid dynamics, and two turbulence models are considered: the two-equation, low-Reynolds-number Chen–Kim k-ε turbulence model, for which several flow properties such as friction factor, Reynolds stress, and turbulence kinetic energy are computed, and the algebraic LVEL model, used only to compute the friction factors and a velocity magnitude profile for comparison. An experimental loop is designed to perform pressure-drop measurements of turbulent water flow in corrugated pipes for the different geometric configurations. Pressure-drop values are correlated with the friction factor to validate the numerical results. These show that, in general, the magnitudes of all the flow quantities analyzed increase near the corrugated wall and that this increase tends to be more significant for higher Reynolds numbers as well as for larger grooves. According to previous studies, these results may be related to enhanced momentum transfer between the groove and core flow as the Reynolds number and groove length increase. Numerical friction factors for both the Chen–Kim k-ε and LVEL turbulence models show good agreement with the experimental measurements.


Author(s):  
C. Bagci ◽  
C. J. McClure ◽  
S. K. Rajavenkateswaran

Abstract The article investigates pocket bearings with contoured profiles of exponential forms on both surfaces inside and outside of the step boundary forming hydro-dynamic action surfaces, and develops optimum design data yielding efficient slider bearings with small pockets with higher load capacities than conventional pocket bearings. In the case of a pocket bearings, in addition to the Reynolds equation used for the regions inside and outside the pocket, the continuity equation along the pocket boundary is satisfied to form the complete model of the bearing. The optimum design data includes dimensionless load-, flow-, temperature rise-, power loss-, stiffness-, and the coefficient of friction factors. Incompressible lubricant with temperature dependent viscosity is considered. Detailed study of conventional pocket bearings with planar surfaces is included. Some optimum exponential pocket bearings yield up to 561 percent increase in load capacity as compared to the conventional tapered bearings.


2019 ◽  
Vol 71 (3) ◽  
pp. 440-446
Author(s):  
Amina Nemchi ◽  
Ahmed Bouzidane ◽  
Aboubakeur Benariba ◽  
Hicham Aboshighiba

Purpose The purpose of this paper is to study the influence of different flow regimes on the dynamic characteristics of four-pad hydrostatic squeeze film dampers (SFDs) loaded between pads. Design/methodology/approach A numerical model based on Constantinescu’s turbulent lubrication theory using the finite difference method has been developed and presented to study the effect of eccentricity ratio on the performance characteristics of four-pad hydrostatic SFDs under different flow regimes. Findings It was found that the influence of turbulent flow on the dimensionless damping of four-pad hydrostatic SFDs appears to be essentially controlled by the eccentricity ratio. It was also found that the laminar flow presents higher values of load capacity compared to bearings operating under turbulent flow conditions. Originality/value In fact, the results obtained show that the journal bearing performances are significantly influenced by the turbulent flow regime. The study is expected to be useful to bearing designers.


Author(s):  
Adolfo Delgado

Compliant hybrid gas bearings combine key enabling features from both fixed geometry externally pressurized gas bearings and compliant foil bearings. The compliant hybrid bearing relies on both hydrostatic and hydrodynamic film pressures to generate load capacity and stiffness to the rotor system, while providing damping through integrally mounted metal mesh bearing support dampers. This paper presents experimentally identified force coefficients for a 110 mm compliantly damped gas bearing using a controlled-motion test rig. Test parameters include hydrostatic inlet pressure, excitation frequency, and rotor speed. The experiments were structured to evaluate the feasibility of implementing these bearings in large size turbomachinery. Dynamic test results indicate weak dependency of equivalent direct stiffness coefficients to most test parameters except for frequency and speed, where higher speeds and excitation frequency decreased equivalent bearing stiffness values. The bearing system equivalent direct damping was negatively impacted by increased inlet pressure and excitation frequency, while the cross-coupled force coefficients showed values an order of magnitude lower than the direct coefficients. The experiments also include orbital excitations to simulate unbalance response representative of a target machine while synchronously traversing a critical speed. The results indicate that the gas bearing can accommodate vibration levels larger than the set bore clearance while maintaining satisfactory damping levels.


1991 ◽  
Vol 113 (1) ◽  
pp. 210-213 ◽  
Author(s):  
J. K. Scharrer ◽  
R. F. Hecht ◽  
R. I. Hibbs

Reynolds equation is solved for the turbulent flow of liquid hydrogen through an orifice compensated hydrostatic bearing with a worn stator element. The clearance function for the worn bearing is defined by the depth and circumferential location of wear and the resulting intersection of the journal and housing radii. Analytical results are presented for stiffness, damping and leakage as a function of bearing wear. The results show that the performance of the bearing degrades steadily for wear amounts greater than 5 percent of the radial clearance and is relatively insensitive to the geometrical location of the wear.


Sign in / Sign up

Export Citation Format

Share Document