Investigation of Tip Clearance Phenomena in an Axial Compressor Cascade Using Euler and Navier–Stokes Procedures

1993 ◽  
Vol 115 (3) ◽  
pp. 453-467 ◽  
Author(s):  
R. F. Kunz ◽  
B. Lakshminarayana ◽  
A. H. Basson

Three-dimensional Euler and full Navier–Stokes computational procedures have been utilized to simulate the flow field in an axial compressor cascade with tip clearance. An embedded H-grid topology was utilized to resolve the flow physics in the tip gap region. The numerical procedure employed is a finite difference Runge-Kutta scheme. Available measurements of blade static pressure distributions along the blade span, dynamic pressure and flow angle in the cascade outlet region, and spanwise distributions of blade normal force coefficient and circumferentially averaged flow angle are used for comparison. Several parameters that were varied in the experimental investigations were also varied in the computational studies. Specifically, measurements were taken and computations were performed on the configuration with and without: tip clearance, the presence of an endwall, inlet endwall total pressure profiles and simulated relative casing rotation. Additionally, both Euler and Navier–Stokes computations were performed to investigate the relative performance of these approaches in reconciling the physical phenomena considered. Results indicate that the Navier–Stokes procedure, which utilizes a low Reynolds number k–ε model, captures a variety of important physical phenomena associated with tip clearance flows with good accuracy. These include tip vortex strength and trajectory, blade loading near the tip, the interaction of the tip clearance flow with passage secondary flow, and the effects of relative endwall motion. The Euler computation provides good but somewhat diminished accuracy in resolution of some of these clearance phenomena. It is concluded that the level of modeling embodied in the present approach is sufficient to extract much of the tip region flow field information useful to designers of turbomachinery.

1992 ◽  
Author(s):  
R. F. Kunz ◽  
B. Lakshminarayana ◽  
A. H. Basson

Three-dimensional Euler and Full Navier-Stokes computational procedures have been utilized to simulate the flow field in an axial compressor cascade with tip clearance. An embedded H-grid topology was utilized to resolve the flow physics in the tip gap region. The numerical procedure employed is a finite difference Runge-Kutta scheme. Available measurements of blade static pressure distributions along the blade span, dynamic pressure and flow angle in the cascade outlet region, and spanwise distributions of blade normal force coefficient and circumferentially averaged flow angle are used for comparison. Several parameters which were varied in the experimental investigations were also varied in the computational studies. Specifically, measurements were taken and computations were performed on the configuration with and without: tip clearance, the presence of an endwall, inlet endwall total pressure profiles and simulated relative casing rotation. Additionally, both Euler and Navier-Stokes computations were performed to investigate the relative performance of these approaches in reconciling the physical phenomena considered. Results indicate that the Navier-Stokes procedure, which utilizes a low Reynolds number k-ε model, captures a variety of important physical phenomena associated with tip clearance flows with good accuracy. These include tip vortex strength and trajectory, blade loading near the tip, the interaction of the tip clearance flow with passage secondary flow and the effects of relative endwall motion. The Euler computation provides good but somewhat diminished accuracy in resolution of some of these clearance phenomena. It is concluded that the level of modelling embodied in the present approach is sufficient to extract much of the tip region flow field information useful to designers of turbomachinery.


Author(s):  
Andreas Krug ◽  
Peter Busse ◽  
Konrad Vogeler

An important aspect of the aerodynamic flow field in the tip region of axial compressor rotors is the unsteady interaction between the tip clearance vortex and the incoming stator wakes. In order to gain an improved understanding of the mechanics involved, systematic studies need to be performed. As a first step towards the characterisation of the dynamic effects caused by the relative movement of the blade rows, the impact of a stationary wake-induced inlet disturbance on a linear compressor cascade with tip clearance will be analysed. The wakes were generated by a fixed grid of cylindrical bars with variable pitch being placed at discrete pitchwise positions. Part I of this two-part paper focuses on experimental studies conducted at the newly designed low-speed cascade wind tunnel in Dresden. The general tunnel configuration and details on the specific cascade setup will be presented. Steady state flow field measurements were carried out using five-hole probe traverses up- and downstream of the cascade and accompanied by static wall pressure readings. 2D-PIV measurements complemented these results by visualizing the blade-to-blade flow field. Hence, the structure of the evolving secondary flow system is evaluated and compared for all tested configurations.


2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Andreas Krug ◽  
Peter Busse ◽  
Konrad Vogeler

An important aspect of the aerodynamic flow field in the tip region of axial compressor rotors is the unsteady interaction between the tip clearance vortex (TCV) and the incoming stator wakes. In order to gain an improved understanding of the mechanics involved, systematic studies need to be performed. As a first step toward the characterization of the dynamic effects caused by the relative movement of the blade rows, the impact of a stationary wake-induced inlet disturbance on a linear compressor cascade with tip clearance will be analyzed. The wakes were generated by a fixed grid of cylindrical bars with variable pitch being placed at discrete pitchwise positions. This paper focuses on experimental studies conducted at the newly designed low-speed cascade wind tunnel in Dresden. The general tunnel configuration and details on the specific cascade setup will be presented. Steady state flow field measurements were carried out using five-hole probe traverses up- and downstream of the cascade and accompanied by static wall pressure readings. 2D-particle image velocimetry (PIV) measurements complemented these results by visualizing the blade-to-blade flow field. Hence, the structure of the evolving secondary flow system is evaluated and compared for all tested configurations.


Author(s):  
Peter Busse ◽  
Andreas Krug ◽  
Konrad Vogeler

An important aspect of the aerodynamic flow field in the tip region of axial compressor rotors is the unsteady interaction between the tip clearance vortex and the incoming stator wakes. In order to gain an improved understanding of the mechanics involved, systematic studies need to be performed. As a first step towards the characterisation of the dynamic effects caused by the relative movement of the blade rows, the impact of a stationary wake-induced inlet disturbance on a linear compressor cascade with tip clearance will be analyzed. The wakes were generated by a fixed grid of cylindrical bars with variable pitch being placed at discrete pitchwise positions. Part II of this two-part paper focuses on the numerical studies conducted with the scientific flow solver TRACE. Selected measurements, which are discussed in detail in the first part of this paper, are compared with steady state RANS simulation data to determine the validity of the computational model. For this purpose, the flow field obtained in the passage (PIV), at the cascade exit (five-hole probes) and the endwall pressure distributions were used. The presented numerical results show potentials and limitations of the steady state CFD for the prediction of the investigated flow phenomena. The computations provide the initial conditions for future unsteady calculations, and enable a separate depiction of potential effects of steady and unsteady wake-tip clearance vortex interaction.


Author(s):  
Julija Peter ◽  
David Konstantin Tilcher ◽  
Robert Meyer ◽  
Paul Uwe Thamsen

The flow field inside a compressor is characterized by highly unsteady flow effects. Consequently, the performance of a compressor is significantly influenced by the complex flow field. Especially at off-design conditions, flow separation and tip clearance flow cause vortex structures and thus increased losses. The objective of this paper is to give an insight into the effect mechanism of the movable stator vanes as an adaptive system to affect unsteady flow conditions. The experiments were conducted in a stator cascade in a water channel at a Reynolds number of Re = 500 000. Inlet guide vanes with movable flaps were used to simulate the periodic variation of the inlet flow angle. As parameters, the mean stagger angle of the stator cascade as well as the phase shift between the sinusoidal movement of the stator and the inlet guide cascade were varied. By using the optical measurement technique High-Speed Particle Image Velocimetry (HS-PIV), the flow fields upstream and downstream of the stator cascade were captured. Overall, the results revealed that the loss coefficient is strongly dependent on the phase shift between the inlet guide cascade and the stator cascade. Using certain phase shifts, a reduction in losses of up to 20% was achieved by the movable stator cascade.


Author(s):  
Hong-Sik Im ◽  
Ge-Cheng Zha

This paper investigates non-synchronous vibration (NSV) mechanism of a high-speed axial compressor with three different rotor tip clearances. Numerical simulations for 1/7th annulus periodic sector are performed using an unsteady Reynolds-averaged Navier-Stokes(URANS) solver with a fully conservative sliding boundary condition to capture wake unsteadiness between the rotor and stator blades. The simulated NSV shows that the frequency and amplitude are strongly influenced by the tip clearance size and shape. The predicted NSV frequency is in good agreement with the experiment. The maximum amplitude of the NSV occurs at about 78% span of the rotor suction leading edge regardless of tip clearance due to a strong interaction of incoming flow, tip leakage flow and tip vortex. The instability of tornado like tip vortex oscillating in streamwise direction appears to be the main cause of the NSV observed in this study.


2021 ◽  
pp. 1-33
Author(s):  
Eric DeShong ◽  
Shawn Siroka ◽  
Reid A. Berdanier ◽  
Karen A. Thole

Abstract The clearance that exists between the casing and turbine blade tips is one of the key drivers of efficiency in gas turbine engines. For this reason, engine manufacturers utilize precise manufacturing techniques and may employ clearance control systems to minimize tip clearances to reduce associated losses. Despite these efforts, turbines typically exhibit some nominal casing ovality or rotor-casing eccentricity, and changes to blade tip clearance during operation commonly occur due to thermal and mechanical stresses. The present study investigates non-axisymmetric tip clearance effects by creating a rotor-casing eccentricity in a one-stage axial test turbine operating in a continuous-duration mode at engine relevant conditions with engine representative hardware. A magnetic levitation bearing system was leveraged to move the turbine shaft to vary the rotor-casing eccentricity without test section disassembly. The results of this study indicate that rotor-casing eccentricity does not affect overall turbine efficiency over the range that was tested, but does locally influence efficiency and the rotor exit flow field. Comparisons of flow angle and secondary flow kinetic energy agreed with previous studies and existing analytical methods, respectively. Collectively, these results indicate that tip clearance can be studied locally on an eccentric rotor.


Author(s):  
Marcel Staats ◽  
Wolfgang Nitsche

We present results of experiments on a periodically unsteady compressor stator flow of the type which would be expected in consequence of pulsed combustion. A Reynolds number of Re = 600000 was used for the investigations. The experiments were conducted on the two-dimensional low-speed compressor testing facility in Berlin. A choking device downstream the trailing edges induced a periodic non-steady outflow condition to each stator vane which simulated the impact of a pressure gaining combuster downstream from the last stator. The Strouhal number of the periodic disturbance was Sr = 0.03 w.r.t. the stator chord length. Due to the periodic non-steady outflow condition, the flow-field suffers from periodic flow separation phenomena, which were managed by means of active flow control. In our case, active control of the corner separation was applied using fluidic actuators based on the principle of fluidic amplification. The flow separation on the centre region of the stator blade was suppressed by means of a fluidic blade actuator leading to an overall time-averaged loss reduction of 11.5%, increasing the static pressure recovery by 6.8% while operating in the non-steady regime. Pressure measurements on the stator blade and the wake as well as PIV data proved the beneficial effect of the active flow control application to the flow field and the improvement of the compressor characteristics. The actuation efficiency was evaluated by two figures of merit introduced in this contribution.


2003 ◽  
Vol 125 (3) ◽  
pp. 405-415
Author(s):  
Ammar A. Al-Nahwi ◽  
James D. Paduano ◽  
Samir A. Nayfeh

This paper presents a first principles-based model of the fluid-induced forces acting on the rotor of an axial compressor. These forces are primarily associated with the presence of a nonuniform flow field around the rotor, such as that produced by a rotor tip clearance asymmetry. Simple, analytical expressions for the forces as functions of basic flow field quantities are obtained. These expressions allow an intuitive understanding of the nature of the forces and—when combined with a rudimentary model of an axial compressor flow field (the Moore-Greitzer model)—enable computation of the forces as a function of compressor geometry, torque and pressure-rise characteristics, and operating point. The forces predicted by the model are also compared to recently published measurements and more complex analytical models, and are found to be in reasonable agreement. The model elucidates that the fluid-induced forces comprise three main contributions: fluid turning in the rotor blades, pressure distribution around the rotor, and unsteady momentum storage within the rotor. The model also confirms recent efforts in that the orientation of fluid-induced forces is locked to the flow nonuniformity, not to tip clearance asymmetry as is traditionally assumed. The turning and pressure force contributions are shown to be of comparable magnitudes—and therefore of equal importance—for operating points between the design point and the peak of the compressor characteristic. Within this operating range, both “forward” and “backward” rotor whirl tendencies are shown to be possible. This work extends recent efforts by developing a more complete, yet compact, description of fluid-induced forces in that it accounts for all relevant force contributions, both tangential and radial, that may influence the dynamics of the rotor. Hence it constitutes an essential element of a consistent treatment of rotordynamic stability under the action of fluid-induced forces, which is the subject of Part II of this paper.


Author(s):  
D Borello ◽  
G Delibra ◽  
K Hanjalić ◽  
F Rispoli

This paper reports on the application of unsteady Reynolds averaged Navier—Stokes (U-RANS) and hybrid large-eddy simulation (LES)/Reynolds averaged Navier—Stokes (RANS) methods to predict flows in compressor cascades using an affordable computational mesh. Both approaches use the ζ— f elliptic relaxation eddy-viscosity model, which for U-RANS prevails throughout the flow, whereas for the hybrid the U-RANS is active only in the near-wall region, coupled with the dynamic LES in the rest of the flow. In this ‘seamless’ coupling the dissipation rate in the k-equation is multiplied by a grid-detection function in terms of the ratio of the RANS and LES length scales. The potential of both approaches was tested in several benchmark flows showing satisfactory agreement with the available experimental results. The flow pattern through the tip clearance in a low-speed linear cascade shows close similarity with experimental evidence, indicating that both approaches can reproduce qualitatively the tip leakage and tip separation vortices with a relatively coarse computational mesh. The hybrid method, however, showed to be superior in capturing the evolution of vortical structures and related unsteadiness in the hub and wake regions.


Sign in / Sign up

Export Citation Format

Share Document